It is amazing that resolvents \(R_\lambda = (T - \lambda)^{-1} \) exist, as everywhere-defined, continuous linear maps on a Hilbert space, even for \(T \) unbounded, and only densely-defined. Of course, some further hypotheses on \(T \) are needed, but these hypotheses are met in useful situations occurring in practice.

In particular, we will need that \(T \) is symmetric, in the sense that \(\langle Tv, w \rangle = \langle v, Tw \rangle \) for \(v, w \) in the domain of \(T \). And we will need to replace \(T \) by its Friedrichs extension, described explicitly below. For example, the Friedrichs extension replaces genuine differentiation by \(L^2 \)-differentiation.\[1\]

So-called unbounded operators on a Hilbert space \(V \) are not literally operators on \(V \), being defined on proper subspaces of \(V \). For unbounded operators on \(V \), the actual domain is an essential part of a description: an unbounded operator \(T \) on \(V \) is a subspace \(D \) of \(V \) and a linear map \(T : D \to V \). The interesting case is that the domain \(D \) is dense in \(V \).

The linear map \(T \) is most likely not continuous when \(D \) is given the subspace topology from \(V \), or it would extend by continuity to the closure of \(D \), presumably \(V \).

Explicit naming of the domain of an unbounded operator is often suppressed, instead writing \(T_1 \subset T_2 \) when \(T_2 \) is an extension of \(T_1 \), in the sense that the domain of \(T_2 \) contains that of \(T_1 \), and the restriction of \(T_2 \) to the domain of \(T_1 \) agrees with \(T_1 \).

An operator \(T', D' \) is a sub-adjoint to an operator \(T, D \) when

\[
\langle Tv, w \rangle = \langle v, T'w \rangle \quad \text{for} \quad v \in D, \ w \in D'
\]

For \(D \) dense, for given \(D' \) there is at most one \(T' \) meeting the adjointness condition.

The adjoint \(T^* \) is the unique maximal element, in terms of domain, among all sub-adjoints to \(T \). That there is a unique maximal sub-adjoint requires proof, given below.

An operator \(T \) is symmetric when \(T \subset T^* \), and self-adjoint when \(T = T^* \). These comparisons refer to the domains of these not-everywhere-defined operators. In the following claim and its proof, the domain of a map \(S \) on \(V \) is incorporated in a reference to its graph

\[
\text{graph } S = \{v \oplus Sv : v \in \text{domain } S\} \subset V \oplus V
\]

[0.0.1] Remark: In practice, anticipating that a given unbounded operator is self-adjoint when extended suitably, a simple version of the operator is defined on an easily described, small, dense domain, specifying a symmetric operator. Then a self-adjoint extension is shown to exist, as in Friedrichs’ theorem below.

[0.0.2] Remark: A symmetric operator that fails to be self-adjoint is necessarily unbounded, since bounded symmetric operators are self-adjoint, because of the existence of orthogonal complements in Hilbert spaces. The latter idea is applied to not-necessarily-bounded operators in the following.

[1] Friedrichs 1934 construction of suitable extensions predates [Sobolev 1937,1938], though the extensions use an abstracted version of what nowadays are usually called Sobolev spaces. The physical motivation for the construction is energy estimates. Existence results for self-adjoint extensions had been discussed in [Neumann 1929], [Stone 1929,30,34], but a useful description of a natural extension first occurred in [Friedrichs 1934]. Further, a Hilbert-space precursor of the Lax-Milgram theorem of [Lax-Milgram 1954] also appears in [Friedrichs 1934], following by the argument Friedrichs uses to prove that his construction gives an extension.
The direct sum \(V \oplus V \) is a Hilbert space, with natural inner product
\[
\langle v \oplus w, v' \oplus w' \rangle = \langle v, v' \rangle + \langle w, w' \rangle
\]
Define an isometry \(U \) of \(V \oplus V \) by
\[
U : V \oplus V \rightarrow V \oplus V \quad \text{by} \quad v \oplus w \rightarrow -w \oplus v
\]

[0.0.3] **Claim:** Given \(T \) with dense domain \(D \), there is a unique maximal \(T^*, D^* \) among all sub-adjoints to \(T, D \). Further, the adjoint \(T^* \) is closed, in the sense that its graph is closed in \(V \oplus V \). In fact, the adjoint is characterized by its graph, which is the orthogonal complement in \(V \oplus V \) to an image of the graph of \(T \), namely,
\[
\text{graph } T^* = \text{orthogonal complement of } U(\text{graph } T)
\]

Proof: The adjointness condition \(\langle Tv, w \rangle = \langle v, T^* w \rangle \) for given \(w \in V \) is an orthogonality condition
\[
\langle w \oplus T^* w, U(v \oplus Tv) \rangle = 0 \quad \text{(for all } v \text{ in the domain of } T)\]
Thus, the graph of any sub-adjoint is a subset of
\[
X = U(\text{graph } T)^\perp
\]
Since \(T \) is densely-defined, for given \(w \in V \) there is at most one possible value \(w' \) such that \(w \oplus w' \in X \), so this orthogonality condition determines a well-defined function \(T^* \) on a subset of \(V \), by
\[
T^* w = w' \quad \text{(if there exists } w' \in V \text{ such that } w \oplus w' \in X)\]
The linearity of \(T^* \) is immediate. It is maximal among sub-adjoints to \(T \) because the graph of any sub-adjoint is a subset of the graph of \(G^* \). Orthogonal complements are closed, so \(T^* \) has a closed graph. \(///\)

[0.0.4] **Corollary:** For \(T_1 \subset T_2 \) with dense domains, \(T_2^* \subset T_1^* \), and \(T_1 \subset T_1^{\ast\ast} \). \(///\)

[0.0.5] **Corollary:** A self-adjoint operator has a closed graph. \(/// \)

[0.0.6] **Remark:** The closed-ness of the graph of a self-adjoint operator is essential in proving existence of resolvents, below.

[0.0.7] **Remark:** The use of the term symmetric in this context is potentially misleading, but standard. The notation \(T = T^* \) allows an inattentive reader to forget non-trivial assumptions on the domains of the operators. The equality of domains of \(T \) and \(T^* \) is understandably essential for legitimate computations.

[0.0.8] **Proposition:** Eigenvalues for symmetric operators \(T, D \) are real.

Proof: Suppose \(0 \neq v \in D \) and \(Tv = \lambda v \). Then
\[
\lambda \langle v, v \rangle = \langle \lambda v, v \rangle = \langle Tv, v \rangle = \langle v, T^* v \rangle \quad \text{(because } v \in D \subset D^*)
\]
Further, because \(T^* \) agrees with \(T \) on \(D \),
\[
\langle v, T^* v \rangle = \langle v, \lambda v \rangle = \overline{\lambda} \langle \bar{v}, v \rangle
\]
Thus, \(\lambda \) is real. \(/// \)
0.0.9 Definition: A densely-defined symmetric operator T, D is positive (or non-negative) when
\[\langle Tv, v \rangle \geq 0 \quad \text{(for all } v \in D) \]

Certainly all the eigenvalues of a positive operator are non-negative real.

0.0.10 Theorem: (Friedrichs) A positive, densely-defined, symmetric operator T, D has a positive self-adjoint extension.

Proof: Define a new hermitian form $\langle \cdot, \cdot \rangle_1$ and corresponding norm $\| \cdot \|_1$ by
\[\langle v, w \rangle_1 = \langle v, w \rangle + \langle Tv, w \rangle \quad \text{(for } v, w \in D) \]

The symmetry and non-negativity of T make this positive-definite hermitian on D. Note that $\langle v, w \rangle_1$ makes sense whenever at least one of v, w is in D.

Let D_1 be the closure in V of D with respect to the metric d_1 induced by $\| \cdot \|_1$. We claim that D_1 is also the d_1-completion of D. Indeed, for v_i a d-Cauchy sequence in D, v_i is Cauchy in V in the original topology, since
\[|v_i - v_j| \leq |v_i - v_j|_1 \]

For two sequences v_i, w_j with the same d-limit v, the d-limit of $v_i - w_i$ is 0. Thus,
\[|v_i - w_i| \leq |v_i - w_i|_1 \to 0 \]

For $h \in V$ and $v \in D_1$, the functional $\lambda_h : v \to \langle v, h \rangle$ has a bound
\[|\lambda_h v| \leq |v| \cdot |h| \leq |v|_1 \cdot |h| \]

Thus, the norm of the functional λ_h on D_1 is at most $|h|$. By Riesz-Fischer, there is unique Bh in the Hilbert space D_1 with $|Bh|_1 \leq |h|$, such that
\[\lambda_h v = \langle Bh, v \rangle_1 \quad \text{(for } v \in D_1) \]

Thus,
\[|Bh| \leq |Bh|_1 \leq |h| \]

The map $B : V \to D_1$ is verifiably linear. There is an obvious symmetry of B:
\[\langle Bv, w \rangle = \lambda_w Bv = \langle Bv, Bw \rangle_1 = \langle Bw, Bv \rangle_1 = \overline{\lambda_B w} = \overline{\langle Bw, v \rangle} = \langle v, Bw \rangle \quad \text{(for } v, w \in V) \]

Positivity of B is similar:
\[\langle Bv, v \rangle = \lambda_w Bv = \langle Bv, Bv \rangle_1 \geq \langle Bv, Bv \rangle = 0 \]

Next, B has dense image in D_1: for $w \in D_1$ such that $\langle Bh, w \rangle_1 = 0$ for all $h \in V$, $0 = \langle w, Bh \rangle = \lambda_h w = \langle h, w \rangle \quad \text{(for all } h \in V) \]

Thus, $w = 0$, proving density of the image of B in D_1. Finally B is injective: if $Bw = 0$, then for all $v \in D_1$
\[0 = \langle v, 0 \rangle_1 = \langle v, Bw \rangle_1 = \lambda_w v = \langle v, w \rangle \]

Thus, B is self-adjoint.

Since B injects V to a dense subset D_1, necessarily A surjects from its domain (inside D_1) to V. We claim that A is self-adjoint. Let $S : V \oplus V \to V \oplus V$ by $S(v \oplus w) = w \oplus v$. Then

$$\text{graph } A = S(\text{graph } B)$$

Also, in computing orthogonal complements X^\perp, clearly

$$(SX)^\perp = S(X^\perp)$$

From the obvious $U \circ S = -S \circ U$, compute

$$\text{graph } A^* = (U \text{ graph } A)^\perp = (U \circ S \text{ graph } B)^\perp = (-S \circ U \text{ graph } B)^\perp$$

$$= -S((U \text{ graph } B)^\perp) = -\text{ graph } A = \text{ graph } A$$

since the domain of B^* is the domain of B. Thus, A is self-adjoint.

We claim that for v in the domain of A, $\langle Av, v \rangle \geq \langle v, v \rangle$. Indeed, letting $v = Bw$,

$$\langle v, Av \rangle = \langle Bw, w \rangle = w_1 Bw = \langle Bw, Bw \rangle_1 \geq \langle Bw, Bw \rangle = \langle v, v \rangle$$

Similarly, with $v' = Bw'$, and $v \in D_1$,

$$\langle v, Av' \rangle = \langle v, w' \rangle = \lambda_w Bw = \langle v, Bw' \rangle_1 = \langle v, v' \rangle_1 \quad (v \in D_1, v' \text{ in the domain of } A)$$

Since B maps V to D_1, the domain of A is contained in D_1. We claim that the domain of A is dense in D_1 in the d-topology, not merely in the subspace topology from V. Indeed, for $v \in D_1$ \langle, \rangle_1-orthogonal to the domain of A, for v' in the domain of A, using the previous identity,

$$0 = \langle v, v' \rangle_1 = \langle v, Av' \rangle$$

Since B injects V to D_1, A surjects from its domain to V. Thus, $v = 0$.

Last, prove that A is an extension of $S = 1_V + T$. On one hand, as above,

$$\langle v, Sw \rangle = \lambda_w w = \langle v, BSw \rangle_1 \quad (\text{for } v, w \in D)$$

On the other hand, by definition of \langle, \rangle_1,

$$\langle v, Sw \rangle = \langle v, w \rangle_1 \quad (\text{for } v, w \in D)$$

Thus,

$$\langle v, w - BSw \rangle_1 = 0 \quad (\text{for all } v, w \in D)$$

Since D is d-dense in D_1, $BSw = w$ for $w \in D$. Thus, $w \in D$ is in the range of B, so is in the domain of A, and

$$Aw = A(BSw) = Sw$$

Thus, the domain of A contains that of S and extends S.

Let $R_\lambda = (T - \lambda)^{-1}$ for $\lambda \in \mathbb{C}$ when this inverse exists as a linear operator defined at least on a dense subset of V.

4
\[[0.0.11] \textbf{Theorem:} \text{ Let } T \text{ be self-adjoint and densely defined. For } \lambda \in \mathbb{C}, \lambda \not\in \mathbb{R}, \text{ the operator } R_\lambda \text{ is everywhere defined on } V, \text{ and the operator norm is estimated by } \]

\[|R_\lambda| \leq \frac{1}{|\text{Im } \lambda|} \]

For \(T \) positive, for \(\lambda \not\in [0, +\infty), \) \(R_\lambda \) is everywhere defined on \(V, \) and the operator norm is estimated by

\[|R_\lambda| \leq \begin{cases}
\frac{1}{|\text{Im } \lambda|} & \text{(for } \text{Re}(\lambda) \leq 0) \\
\frac{1}{|\lambda|} & \text{(for } \text{Re}(\lambda) \geq 0)
\end{cases} \]

\[\text{Proof: For } \lambda = x + iy \text{ off the real line and } v \text{ in the domain of } T, \]

\[|(T - \lambda)v|^2 = |(T + x)v|^2 + \langle (T - x)v, iyv \rangle + \langle iyv, (T - x)v \rangle + y^2|v|^2 \]

\[= |(T + x)v|^2 - iy((T - x)v, v) + iy\langle v, (T - x)v \rangle + y^2|v|^2 \]

The symmetry of \(T \), and the fact that the domain of \(T^* \) contains that of \(T \), implies that

\[\langle v, Tv \rangle = \langle T^*v, v \rangle = \langle Tv, v \rangle \]

Thus,

\[|(T - \lambda)v|^2 = |(T - x)v|^2 + y^2|v|^2 \geq y^2|v|^2 \]

Thus, for \(y \neq 0 \), \((T - \lambda)v \neq 0 \). Let \(D \) be the domain of \(T \). On \((T - \lambda)D\) there is an inverse \(R_\lambda \) of \(T - \lambda \), and for \(w = (T - \lambda)v \) with \(v \in D \),

\[|w| = |(T - \lambda)v| \geq |y| \cdot |v| = |y| \cdot |R_\lambda(T - \lambda)v| = |y| \cdot |R_\lambda w| \]

which gives

\[|R_\lambda w| \leq \frac{1}{|\text{Im } \lambda|} \cdot |w| \quad (\text{for } w = (T - \lambda)v, v \in D) \]

Thus, the operator norm on \((T - \lambda)D\) satisfies \(|R_\lambda| \leq 1/|\text{Im } \lambda| \) as claimed.

We must show that \((T - \lambda)D\) is the whole Hilbert space \(V \). If

\[0 = \langle (T - \lambda)v, w \rangle \quad (\text{for all } v \in D) \]

then the adjoint of \(T - \lambda \) can be defined on \(w \) simply as \((T - \lambda)^*w = 0 \), since

\[\langle Tv, w \rangle = 0 = \langle v, 0 \rangle \quad (\text{for all } v \in D) \]

Thus, \(T^* = T \) is defined on \(w \), and \(Tw = \overline{\lambda}w \). For \(\lambda \) not real, this implies \(w = 0 \). Thus, \((T - \lambda)D\) is dense in \(V \).

Since \(T \) is self-adjoint, it is \textit{closed}, so \((T - \lambda)D\) is closed. The equality

\[|(T - \lambda)v|^2 = |(T - x)v|^2 + y^2|v|^2 \]

gives

\[|(T - \lambda)v|^2 \ll_y |v|^2 \]

Thus, for fixed \(y \neq 0 \), the map

\[v \oplus (T - \lambda)v \longrightarrow (T - \lambda)v \]
respects the metrics, in the sense that
\[|(T - \lambda)v|^2 \leq |(T - \lambda)v|^2 + |v|^2 \ll_y |(T - \lambda)v|^2 \quad \text{(for fixed } y \neq 0) \]

The graph of \(T - \lambda \) is closed, so is a complete metric subspace of \(V \oplus V \). Since \(F \) respects the metrics, it preserves completeness. Thus, the metric space \((T - \lambda)D\) is complete, so is a closed subspace of \(V \). Since the closed subspace \((T - \lambda)D\) is dense, it is \(V \). Thus, for \(\lambda \notin \mathbb{R}, R_\lambda \) is everywhere-defined. Its norm is bounded by \(1/|\text{Im} \lambda| \), so it is a continuous linear operator on \(V \).

Similarly, for \(T \) positive, for \(\text{Re} \lambda \leq 0 \),
\[|(T - \lambda)v|^2 = |v|^2 - \lambda \langle Tv, v \rangle + |\lambda|^2 \cdot |v|^2 = |Tv|^2 + 2|\text{Re} \lambda| \langle Tv, v \rangle + |\lambda|^2 \cdot |v|^2 \geq |\lambda|^2 \cdot |v|^2 \]
Then the same argument proves the existence of an everywhere-defined inverse \(R_\lambda = (T - \lambda)^{-1} \), with \(\|R_\lambda\| \leq 1/|\lambda| \) for \(\text{Re} \lambda \leq 0 \).

[0.0.12] Theorem: (Hilbert) For points \(\lambda, \mu \) off the real line, or, for \(T \) positive, for \(\lambda, \mu \) off \([0, +\infty) \),
\[R_\lambda - R_\mu = (\lambda - \mu)R_\lambda R_\mu \]

For the operator-norm topology, \(\lambda \to R_\lambda \) is holomorphic at such points.

Proof: Applying \(R_\lambda \) to
\[1_V - (T - \lambda)R_\mu = ((T - \mu) - (T - \lambda))R_\mu = (\lambda - \mu)R_\mu \]
gives
\[R_\lambda(1_V - (T - \lambda)R_\mu) = R_\lambda((T - \mu) - (T - \lambda))R_\mu = R_\lambda(\lambda - \mu)R_\mu \]
Then
\[\frac{R_\lambda - R_\mu}{\lambda - \mu} = R_\lambda R_\mu \]
For holomorphy, with \(\lambda \to \mu \),
\[\frac{R_\lambda - R_\mu}{\lambda - \mu} - R_\mu^2 = R_\lambda R_\mu - R_\mu^2 = (R_\lambda - R_\mu)R_\mu = (\lambda - \mu)R_\lambda R_\mu R_\mu \]
Taking operator norm, using \(\|R_\lambda\| \leq 1/|\text{Im} \lambda| \),
\[\left\| \frac{R_\lambda - R_\mu}{\lambda - \mu} - R_\mu^2 \right\| \leq \frac{|\lambda - \mu|}{|\text{Im} \lambda| \cdot |\text{Im} \mu|^2} \]
Thus, for \(\mu \notin \mathbb{R}, \) as \(\lambda \to \mu \), this operator norm goes to 0, demonstrating the holomorphy.

For positive \(T \), the estimate \(\|R_\lambda\| \leq 1/|\lambda| \) for \(\text{Re} \lambda \leq 0 \) yields holomorphy on the negative real axis by the same argument. ///

