Characterization of differential operators

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

Differential operators obviously do not increase support when applied to test functions. The converse is certainly not clear. [Peetre 1959,60] proved this, incorporating corrections from L. Carleson. We follow [Helgason 1984] pp 236-238, who adapts the argument from [Narasimhan 1968].

\[0.0.1 \] Theorem: Let \(V \) be a smooth manifold. A not-necessarily-continuous linear map \(D : C_c^\infty(V) \to C_c^\infty(V) \) that does not increase supports is a differential operator with smooth coefficients.

Proof: First, claim that the non-increase of support property implies that, for a test function \(f \) and a point \(x \), for any test function \(\varphi \) identically 1 on a neighborhood of \(x \), suitable truncation does not affect \(D \), in the sense that

\[
(Df)(x) = (D(\varphi f))(x)
\]

Indeed, \(f = \varphi f + (1 - \varphi)f \), and \(D \) is linear, so

\[
Df = D(\varphi f) + D((1 - \varphi)f)
\]

The non-increase of support implies that \(D((1 - \varphi)f)(x) = 0 \), yielding the claim.

This truncation property immediately allows us to consider the corresponding local problem, of operators on open subsets of Euclidean spaces, without loss of generality.

Next, the non-increase of support allows an extension of \(D \) to all smooth functions on \(V \) by using cut-off functions: given smooth \(f \) and a point \(x \), let \(\varphi \) be a test function identically 1 on a neighborhood of \(x \), and define \(Df(x) = D(\varphi f)(x) \). The latter is well-defined by the previous claim.

Let \(\|f\|_{U,m} \) be the sup on \(U \) of sups of the derivatives of \(f \) of orders \(\leq m \).

Next, claim that for \(f \) smooth on \(U \) with derivatives of order \(\leq m \) vanishing at 0, for every \(\varepsilon > 0 \) there is a smooth function \(g \) vanishing identically in a neighborhood of 0, coinciding exactly with \(f \) outside a larger neighborhood of 0, such that \(|f - g|_{U,m} < \varepsilon \). Let \(\varphi \) be a smooth function identically 0 on \(|x| \leq \frac{1}{2} \), identically 1 for \(|x| \geq 1 \), and \(0 \leq \varphi \leq 1 \) everywhere. Then consider the family of modifications of \(f \) given by

\[
g_\delta(x) = \varphi(x/\delta) \cdot f(x) \quad \text{(for } \delta > 0 \text{ small)}
\]

Each \(g_\delta \) agrees with \(f \) outside the \(\delta \)-ball \(B_\delta \) at 0. It would suffice to prove

\[
\lim_{\delta \to 0} \|f - g_\delta\|_{B_{\delta},m} = 0
\]

Since \(f \) vanishes to order \(m \) at 0,

\[
\lim_{\delta \to 0} \|f\|_{B_{\delta},m} = 0
\]

so we must prove that

\[
\lim_{\delta \to 0} \|g_\delta\|_{B_{\delta},m} = 0
\]

For multi-index \(\alpha \), apply Leibniz’ rule to the \(\alpha \)th derivative of \(g_\delta \):

\[
g_\delta^{(\alpha)}(x) = \sum_{\beta + \gamma = \alpha} \binom{\alpha}{\beta} \delta^{-|\alpha|} \varphi^{(\beta)}(x/\delta) f^{(\gamma)}(x)
\]

Thus,

\[
|g_\delta^{(\alpha)}(x)| \ll \sum_{\beta + \gamma = \alpha} \delta^{-|\beta|} \|f^{(\gamma)}(x)\| \quad \text{(with } x \in B_\delta)\]

1
with implied constant independent of \(f \) and \(\delta \). The derivative \(f^{(\gamma)} \) vanishes to order \(m - |\gamma| \) at 0, so, from the Taylor expansion of \(f \) at 0,

\[
\sup_{B_\delta} |f^{(\gamma)}| = o(\delta^{m-|\gamma|})
\]

Thus,

\[
\sup_{B_\delta} |g_\delta^{(\alpha)}(x)| = o\left(\sum_{\beta + \gamma = \alpha} \delta^{m-|\beta|-|\gamma|} \right) = o(\delta^{m-|\alpha|})
\]

Thus, as claimed, \(|f - g_\delta|_{B_\delta,m} \to 0 \).

Next, claim a somewhat weaker continuity assertion than the theorem, namely, that for every point \(x_0 \) there is a sufficiently small neighborhood \(U \) of \(x_0 \), integer \(m \), such that

\[
|Df|_{U,0} \ll |f|_{U,m} \quad (\text{for } f \in C^\infty_c(U - \{x_0\}))
\]

with the implied constant independent of \(f \). This follows by a diagonal argument: if this failed at some \(x_0 \), then for given compact-closure neighborhood \(U_0 \) of \(x_0 \) there is \(f_1 \in C^\infty_c(U_0 - \{x_0\}) \) such that

\[
|Df_1|_0 \geq 2^2 \cdot |f_1|
\]

Let \(U_1 \) be the zero-set of \(f_1 \), so \(U_0 - \overline{U}_1 \) is a neighborhood of \(x_0 \), and there is \(f_2 \in C^\infty_c(U_0 - \overline{U}_1 - \{x_0\}) \) such that

\[
|Df_2|_0 \geq 2^4 \cdot |f_2|
\]

By induction, obtain open sets \(U_i \) with \(U_i \cap U_j = \emptyset \) for \(i, j \geq 1 \), and test functions

\[
f_i \in C^\infty_c(U_0 - \overline{U}_1 - \ldots - \overline{U}_{i-1} - \{x_0\})
\]

with

\[
|Df_i|_0 \geq 2^{2i} \cdot |f_i|
\]

Then the sum

\[
\sum_i \frac{f_i}{2^i \cdot |f_i|}
\]

converges and gives a test function, equal to the \(i^{th} \) summand \(f_i/(2^i \cdot |f_i|) \) on \(U_i \). The linearity and non-increase of support of \(D \) imply that

\[
Df \bigg|_{U_i} = \frac{1}{2^i \cdot |f_i|} \cdot Df_i \bigg|_{U_i}
\]

Thus, there exists \(x_i \in U_i \) such that \(Df(x_i) > 2^i \). But \(f \) is continuous and compactly supported, so this is impossible, proving the claim.

Next, thinking in terms of that last weak continuity, we prove a local result: for a neighborhood \(U \) of a point \(x \), under the continuity hypothesis

\[
|Df|_{U,0} \ll |f|_{U,m}
\]

on a sufficiently small neighborhood of \(x \), \(D \) is a differential operator with smooth coefficients. For the proof of this, for each \(x \in U \) and multi-index \(\alpha \), let

\[
P_{x,\alpha}(y) = (x - y)^\alpha = (x_1 - y_1)^{\alpha_1} \cdots (x_n - y_n)^{\alpha_n}
\]

For \(f \in C^\infty_c(U) \) and fixed \(x \in U \), consider a subsum of the Taylor expansion of \(f \) near \(x \),

\[
F = f - \sum_{|\alpha| \leq m} \frac{1}{\alpha!} f^{(\alpha)}(x) \cdot P_{\alpha,x}
\]
This F vanishes to order m at x. As shown above, given $\varepsilon > 0$ there is a test function Φ, vanishing identically in a neighborhood of x (depending upon ε), agreeing identically with F outside a larger neighborhood of x (depending upon ε), and with $|F - \Phi|_m \leq \varepsilon$. The continuity assumption gives $|D(F - \Phi)|_0 \to 0$ as $\varepsilon \to 0$. The non-increase of support implies that each $D\Phi$ vanishes identically near x. Thus, $|DF(x)| < \varepsilon$ for every $\varepsilon > 0$, so $DF(x) = 0$. Thus, for each $x \in U$,

$$Df(x) = \sum_{|\alpha| \leq m} \frac{1}{\alpha!} f^{(\alpha)}(x) \cdot DP_{\alpha,x}(x)$$

To understand $b_\alpha(x) = DP_{\alpha,x}(x)$, observe that it is a sum of terms $P_\beta(x) y^\beta$ with P_β a polynomial. By linearity of D,

$$D(\sum_\beta P_\beta(x) \cdot y^\beta) = \sum_\beta P_\beta(x) \cdot D(y^\beta)$$

By hypothesis $D(y^\beta)$ is a test function, so the diagonal

$$DP_{\beta,x}(x) = \sum_\beta P_\beta(x) \cdot D(x^\beta)$$

is a finite sum of polynomial multiples of test functions, and is a test function itself. Thus, the expression for $Df(x)$ exhibits it as a differential operator with smooth coefficients on U.

Finally, we reduce the general question of expressibility of D to the local one, essentially by a partition of unity argument. At each $x \in V$, let U_x be a small-enough neighborhood of x, m_x an integer, so that we have a continuity bound

$$|Df|_{U_x,0} \ll |f|_{U_x,m_x} \quad \text{(for } f \in C_c^\infty(U_x - \{x\}) \text{)}$$

with implied constant independent of f. For an open $U \subset V$ with compact closure $\overline{U} \subset V$, take a finite subcover U_{x_1}, \ldots, U_{x_n} of the opens U_x. Let $\{\varphi_j\}$ be a partition of unity subordinate to the cover U_{x_1}, \ldots, U_{x_n} and $V - \overline{U}$ of V. For f a test function on the set

$$U' = U - \{x_1\} - \ldots - \{x_n\}$$

certainly

$$f = \sum_{j=1}^{n+1} \varphi_j \cdot f = \sum_{j=1}^{n} \varphi_j \cdot f$$

and each $\varphi_j f$ satisfies a corresponding continuity bound. Expanding the derivatives of $\varphi_j f$ by Leibniz, we find that f itself satisfies such a continuity bound on U_{x_j}, and, therefore, satisfies a uniform continuity bound throughout U'. Thus, on U', D is a differential operator with smooth coefficients

$$Df(x) = \sum_j a_j(x) \cdot \left(\frac{\partial}{\partial x} \right)^\alpha f(x) \quad \text{(for } x \in U', f \in C_c^\infty(U'))$$

In fact, the non-increase of support property allows us to extend the validity of this to $f \in C_c^\infty(U)$, at least for $x \in U'$: take $\varphi \in C_c^\infty(U')$ identically 1 near x and identically 0 near every x_i. Then $\varphi f \in C_c^\infty(U')$, and the property $D(\varphi f)(x) = Df(x)$ observed earlier gives

$$Df(x) = \sum_j a_j(x) \cdot \left(\frac{\partial}{\partial x} \right)^\alpha f(x) \quad \text{(for } x \in U', f \in C_c^\infty(U))$$

Finally, because both sides of the last equation are continuous in x, this equality holds not merely for $x \in U'$, but for $x \in U$. This holds for every $\overline{U} \subset V$, so is valid on V.

///
