
SUBCONVEXITY BOUNDS FOR AUTOMORPHIC L–FUNCTIONS

A. Diaconu and P. Garrett

Abstract. We break the convexity bound in the t–aspect for L–functions attached to cuspforms f for
GL2(k) over arbitrary number fields k. The argument uses asymptotics with error term with a power
saving, for second integral moments over spectral families of twists L(s, f ⊗χ) by grossencharacters χ,
from our previous paper [Di-Ga].

§0. Introduction

In many instances, for cuspidal automorphic forms f on reductive adele groups over number
fields, the circle of ideas around the Phragmen-Lindelöf principle, together with the functional
equation for L(s, f) and asymptotics for Γ(s), give an upper bound for L(s, f) on <(s) = 1

2 . These
are convexity bounds, or trivial bounds. For example, for the standard L-functions for cuspforms for
GLn, the convexity bound is known. The survey [IS] gives a general formulation of the subconvexity
problem. See also the survey [Mi2].

In particular, the convexity bound for the Riemann zeta function is

ζ( 1
2 + it) �ε (1 + |t|) 1

4+ε (for all ε > 0)

and for χ a primitive Dirichlet character of conductor q

L( 1
2 , χ) �ε q

1
4+ε (for all ε > 0)

A similar estimate holds with 1
2 replaced by 1

2 + it. The Generalized Lindelöf Hypothesis would
replace the exponent 1

4 + ε by ε. The subconvexity problem for GL1 over Q asks for an estimate
with exponent strictly below 1

4 . In [W] Weyl proved

ζ( 1
2 + it) �ε (1 + |t|) 1

6+ε (for all ε > 0)

and in [Bu] Burgess showed

L(s, χ) �ε q
3
16+ε (fixed s with <(s) = 1

2 , for all ε > 0)
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2 A. DIACONU AND P. GARRETT

It is noteworthy that Burgess’ method relies upon Weil’s Riemann Hypothesis for curves over finite
fields. For quadratic characters, in [CI] Conrey and Iwaniec showed

L(s, χ) �ε q
1
6+ε (fixed s with <(s) = 1

2 , for all ε > 0)

For degree two, t–aspect subconvexity bounds were obtained by Good for holomorphic modular
forms in [G1], and by Meurman for waveforms in [Me]. Duke, Friedlander, and Iwaniec treated
subconvexity in the other aspects in several papers, including [DFI1]-[DFI5]. See also Blomer,
Harcos, and Michel in [BHM]. For applications of subconvexity to equidistribution and other
problems, see [IS] and [MV]. For higher-degree L–functions over Q, there are fewer results. Among
these are Sarnak [Sa4], Kowalski, Michel, and Vanderkam [KMV], Michel [Mi1] and Michel-Harcos
[HM], Bernstein-Reznikov [BR], and Lau-Liu-Ye [LLY]. Interesting recent subconvexity results for
Gelbart-Jacquet lifts from GL2 to GL3 appear in [Li].

For GL2 over a number field, see [Pe-Sa] and [CPSS]. The latter gives an application to Hilbert’s
eleventh problem on representability by ternary quadratic forms.

In this paper we establish a subconvex bound in the t–aspect for the standard L–function
attached to a cuspform f on GL2 over an arbitrary number field. The approach relies upon
results of our previous paper [Di-Ga], with special choice of data entering into the Poincaré series,
essentially the choice made by Good in [G2], and the technique discussed in [DG1] and [DG2]. As
usual, we also need a spectral gap, for which we cite [KS]. These ideas, together with standard
methods from analytic number theory, yield the subconvexity result. We note that subconvexity
results in the conductor aspect for GL2 over number fields, and Rankin-Selberg convolutions and
triple products for GL2 over number fields, were also recently obtained in [V].

The structure of this paper is as follows. The first section recalls notation and facts from [Di-Ga].
The second and third sections establish the meromorphic continuation and polynomial growth in
vertical strips of a generating function attached to the family of twists of a fixed GL2 cuspform
L–function by grossencharacters. We note that this should be viewed as a spectral family with
respect to GL2 × GL1 with the GL2 component fixed. One of the main difficulties in obtaining
the subconvexity result is proof of the polynomial growth of the generating function, which is
established in section 3. Section 4 is essentially an application of standard techniques to prove
subconvexity from the results of sections 2 and 3. Concretely, as usual, we prove a mean value result
with a power saving in the error term, from which an estimate on short intervals follows almost
immediately. From this the subconvexity bound follows. We also include an appendix consisting of
explicit computations and estimates concerning a particular special function appearing throughout
the discussion.

Acknowledgements: We would like to acknowledge useful comments and advice from P. Sarnak.

§1. Preliminaries

This section recalls some of the notation, context, and results of [Di-Ga]. Let k be a number
field, G = GL2 over k, and define standard subgroups

P =
{(

∗ ∗
0 ∗

)}
N =

{(
1 ∗
0 1

)}
H =

{(
∗ 0
0 1

)}
M = ZH =

{(
∗ 0
0 ∗

)}
Let Kν denote the standard maximal compact in the kν–valued points Gν of G. That is, at finite
places Kν = GL2(oν), at real places Kν = O(2), and at complex places Kν = U(2). The Poincaré



SUBCONVEXITY BOUNDS FOR AUTOMORPHIC L–FUNCTIONS 3

series Pé(g) discussed in [Di-Ga] is of the form

(1.1) Pé(g) =
∑

γ∈ZkHk\Gk

ϕ(γg) (g ∈ GA)

for suitable functions ϕ on GA described as follows. For v ∈ C, let

ϕ =
⊗

ν

ϕν

where for ν finite

ϕν(g) =


∣∣a
d

∣∣v
ν

for g = mk with m =
(

a 0
0 d

)
∈ ZνHν and k ∈ Kν

0 otherwise

and for ν archimedean require right Kν–invariance and left equivariance

ϕν(mg) =
∣∣∣a
d

∣∣∣v
ν
· ϕν(g)

(
for g ∈ Gν and m =

(
a 0
0 d

)
∈ ZνHν

)
Thus, for ν|∞, the further data determining ϕν consists of its values on Nν . The simplest useful
choice is

(1.2) ϕν

(
1 x
0 1

)
= (1 + |x|2)−dνwν/2 (with wν ∈ C)

with dν = [kν : R]. By the product formula, ϕ is left ZAHk–invariant. It is critically important for
the purposes of this paper that we can make another choice of this data, in Section 3.

The specific choice (1.2) of ϕ∞ = ⊗ν|∞ ϕν in the series (1.1) defining Pé(g) produces a Poincaré
series converging absolutely and locally uniformly for <(v) > 1 and <(wν) > 1 for all ν|∞. This
is essentially a direct computation. For example, see Proposition 2.6 of [Di-Ga].

For 0 < ` ∈ Z, let Ω` be the collection of ϕ∞ such that the associated function

Φ∞(x) = ϕ∞

(
1 x
0 1

)
(for x ∈ k∞)

is absolutely integrable on the unipotent radical N∞, and such that the Fourier transform Φ̂∞
along N∞ ≈ k∞ satisfies the bound

Φ̂∞(x) �
∏

ν|∞
(1 + |x|2ν)−`/2

For example, for ϕ∞ to be in Ω` it suffices that Φ∞ is ` times continuously differentiable, with each
derivative absolutely integrable. For <(wν) > 1, ν|∞, the simple explicit choice (1.2) of ϕ∞ lies
in Ω` for every ` > 0. For convenience, a monomial vector ϕ as above will be called `–admissible,
if ϕ∞ ∈ Ω` when <(v) is sufficiently large. When the data is `–admissible for all large `, we may
say simply that the data is admissible. It is not hard to see that, after subtraction of a suitable
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Eisenstein series, the Poincaré series defined via admissible data is square-integrable on ZAGk\GA.
(See Proposition 2.7 of [Di-Ga].) In fact, (1 + ε)–admissibility for ε > 0 suffices.

Let f be a cuspform on GA. Require that f is a special vector locally everywhere in the
representation it generates, in the following sense. Let

f(g) =
∑

ξ∈Hk

Wf (ξg)

be the Fourier expansion of f , and let

Wf =
⊗
ν≤∞

Wf,ν

be the factorization of the Whittaker function Wf into local data. We may require that for all
ν < ∞ the Hecke–type local integrals∫

a∈k×ν

Wf,ν

(
a 0
0 1

)
|a|s−

1
2

ν da

differ by at most an exponential function from the correct local L–factors for the representation
generated by f .

The integral

(1.3) I(v, w) = 〈Pé, |f |2〉 =
∫

ZAGk\GA

Pé(g) |f(g)|2 dg

can be evaluated in two ways. The first produces a moment expansion involving integral second
moments of L(s, f ⊗ χ) for grossencharacters χ unramified outside a fixed finite set S of places.
The other evaluation uses the spectral expansion of Pé. We review this in some detail.

For ϕ a (1 + ε)–admissible monomial vector as above, Theorem 3.12 of [Di-Ga] shows that
I(v, w) unwinds to a moment expansion

(1.4) I(v, w) =
∑

χ∈ bC0,S

1
2πi

∫
<(s)=σ

L(v + 1− s, f̄ ⊗ χ) · L(s, f ⊗ χ)K∞(s, v, χ) ds

where, for ν infinite and s ∈ C,

K∞(s, v, χ) = K∞(s, v, χ, ϕ∞) =
∏
ν|∞

Kν(s, v, χν)

and

Kν(s, v, χν) =
∫

Zν\MνNν

∫
Zν\Mν

ϕν(mνnν)Wf,ν(mνnν)

·Wf,ν(m′
νnν) χν(m′

ν) |m′
ν |

s− 1
2

ν χν(mν)−1 |mν |
1
2−s
ν dm′

ν dnν dmν

Here χ =
⊗

ν χν ∈ Ĉ0, the unitary dual of the idele class group (of ideles of idele norm 1). For
(1+ε)–admissible ϕ, the integral defining Kν converges absolutely for <(s) sufficiently large. When
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the archimedean data ϕ∞ is the simple choice (1.2) or the variant (3.1), depending upon a complex
parameter w, we will denote the above Kν(s, v, χν) by Kν(s, v, w, χν). Let S be a finite set of places
including archimedean places, all absolutely ramified primes, and all finite bad places for f . The
summands in the moment expansion are non-zero only for χ in a set Ĉ0,S of characters unramified
outside S, with bounded ramification at finite places in S, depending only upon f .

On the other hand, we also gave the spectral decomposition of the Poincaré series, as follows.
Let {F} be an orthonormal basis of everywhere locally spherical cuspforms, and let d be the idele
with νth component dν at finite places ν and component 1 at archimedean places. Then the spectral
decomposition is (see (4.13) in [Di-Ga])

Pé =
(∫

N∞

ϕ∞

)
· Ev+1 +

∑
F

(∫
Z∞\G∞

ϕ∞ ·WF,∞

)
· L(v + 1

2 , F ) · F

(1.5)

+
∑

χ

χ(d)
4πiκ

∫
<(s)= 1

2

(∫
Z∞\G∞

ϕ∞ ·WE
1−s, χ,∞

)
L(v + 1− s, χ) · L(v + s, χ)

L(2− 2s, χ2)
|d|−(v+s−1/2) · Es,χ ds

When the archimedean data is specialized to (1.2), by Theorem 4.17 in [Di-Ga], the Poincaré series
Pé(g) has meromorphic continuation in the variables v and w, to a region in C2 containing v = 0
and w = 1. And, for v = 0, as a function of w, it is holomorphic in <(w) > 11/18 except for a
pole at w = 1 of order r1 + r2 + 1.

In the following sections, with the simple choice (1.2) of archimedean data, and the variant
(3.1), the νth local integral of ϕν ·W ν over Zν\Gν in (1.5) will be denoted Gν(s; v, w), and G∞ will
be the product of the Gν over all archimedean places.

Fix an archimedean place ν0 , and take 1 < α ≤ 2, to be specified later. If r1 ≥ 1, we shall
assume for convenience that ν0 is real. This convenient assumption is nevertheless inessential, and
we will point out in Section 3 the necessary adaptation when the ground field k is totally complex.

For a character χ ∈ Ĉ0, and t ∈ R, w ∈ C, put

(1.6) κχ(t, w) = κχ(t, w, α) =
(
1 + |t + tν0

|
)−w ∏

ν|∞
ν 6=ν0

Kν( 1
2 + it, 0, α, χν) (r1 ≥ 1)

where Kν(s, v, w, χν) is as above, corresponding to the choice (1.2) for ϕν . If r1 = 0, we define
κχ(t, w) by replacing 1 + |t + tν0

| in (1.6) with 1 + `2ν0
+ 4(t + tν0

)2. Here itν and `ν are the
parameters of the local component χν of χ. Note that, since χ is trivial on the positive reals, there
is a relation among the local parameters, namely,∑

ν|∞

dν tν = 0

with dν = [kν : R] the local degree.
Define

(1.7) Z(w) =
∑

χ∈ bC0,S

∞∫
−∞

|L( 1
2 + it, f ⊗ χ)|2 κ

χ
(t, w) dt

By the argument given in [Di-Ga], Section 5, pages 23 and 24, the right-hand side of (1.7) is
absolutely convergent for <(w) > 1. The main objective of this paper is to meromorphically
continue this generating function Z(w), with polynomial vertical growth. From this, a subconvexity
bound for individual L–functions will follow by essentially traditional techniques.
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§2. Meromorphic continuation of Z(w)

In this section we establish the following

Theorem 2.1. The function Z(w), originally defined by (1.7) for <(w) > 1, has analytic
continuation to the half-plane <(w) > 11/18, except for w = 1 where it has a pole of order two.

Proof: Write w = δ + iη. For C > 0, possibly depending upon w, let

(2.2) Z1(w) = Z1(w,C) =
∑

χ∈ bC0,S

∫
|t+tν0

|�C

|L( 1
2 + it, f ⊗ χ)|2 κχ(t, w) dt

and set Z2(w) = Z(w) − Z1(w). We shall be more specific on the choice of C later in the proof.
Using (5.11) in [Di-Ga] together with its analog at real places (see also the Appendix), we have∑

χ∈ bC0,S

∫
|t+tν0

|�C

|L( 1
2 + it, f ⊗ χ)|2 κχ(t, w) dt ≤

∑
χ∈ bC0,S

∫
|t+tν0

|�C

|L( 1
2 + it, f ⊗ χ)|2 κχ(t, δ) dt

Since (
1 + |t + tν0 |

)−δ �α, C

(
1 + |t + tν0 |

)−α (δ > 0)

it readily follows that Z1(w) is holomorphic in the half-plane δ > 0.
To obtain the continuation of the remaining part Z2(w), consider

(2.3) I(v, w, α) =
∑

χ∈ bC0,S

1
2πi

∫
<(s)=σ

L(χ−1| · |v+1−s, f̄) · L(χ| · |s, f)K∞(s, v, w, α, χ) ds

where
K∞(s, v, w, α, χ) = Kν0

(s, v, w, χν0
) ·
∏
ν|∞
ν 6=ν0

Kν(s, v, α, χν)

By Proposition 2.6 and Theorem 3.12 in [Di-Ga],

(2.4) I(v, w, α) =
∫

ZAGk\GA

Pé(g) |f(g)|2 dg

provided <(v), <(w) > 1. The choice of initial archimedean data determining the Poincaré series
is given by (1.2) with wν = w or α according as ν = ν0 or not. On the other hand, we have also
established in that paper the analytic continuation of this Poincaré series (see Theorem 4.17 in
[Di-Ga]). These facts were reviewed in Section 1. In the present situation, the only change in the
statement of that theorem is that the order of the pole at w = 1 of Pé(g), when v = 0, is two
instead of r1 + r2 + 1. It follows that I(0, w, α) is analytic in the half-plane <(w) > 11/18, except
for w = 1 where it has a pole of order two. Note that for <(w) = δ > 1, we can express

I(0, w, α) =
∑

χ∈ bC0,S

1
2π

∞∫
−∞

|L( 1
2 + it, f ⊗ χ)|2K∞( 1

2 + it, 0, w, α, χ) dt(2.5)

= I1(0, w, α) + I2(0, w, α)
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where
I1(0, w, α) =

1
2π

∑
χ∈ bC0,S

∫
|t+tν0

|�C

|L( 1
2 + it, f ⊗ χ)|2K∞( 1

2 + it, 0, w, α, χ) dt

We choose C = C(η) such that (A.6) or (A.7) (depending on whether ν0 is complex or real) becomes
effective. We remark that C(η) is uniform in δ on closed intervals to the right of 11/18, and depends
polynomially on |η| (see [DG1], the corresponding analysis in [DG2], and the appendix at the end
of this paper).

Using (A.6) or (A.7), we can write

I2(0, w, α) = (2π)−1B(0, w, µ
f, ν0

) [Z(w) − Z1(w) + Z3(w)]

with Z3(w) holomorphic in the half-plane δ > 11/18.
To finish the proof, we show that the series defining I1(0, w, α) for <(w) > 1 is in fact absolutely

convergent for <(w) > 11/18. To see this, refer to the Appendix, especially (A.4) and (A.5). We
have

I1(0, w, α) =
1
2π

∑
χ∈ bC0,S

∫
|t+tν0

|�C

|L( 1
2 + it, f ⊗ χ)|2K∞( 1

2 + it, 0, w, α, χ) dt

�
∑

χ∈ bC0,S

∫
|t+tν0

|�C

|L( 1
2 + it, f ⊗ χ)|2K∞( 1

2 + it, 0, δ, α, χ) dt

�
∑

χ∈ bC0,S

∫
|t+tν0

|�C

|L( 1
2 + it, f ⊗ χ)|2 κχ(t, α) dt

The first inequality comes from the structure of the integral representation (A.4), and the second
comes from the domination (A.8) of the local factors of the kernel by the local factors of the analytic
conductor. Notice that the integral representation (A.4) holds for <(w) > 2/9. The convergence
of the last expression is clear. �

§3. Growth of Z(w)

Our objective is now to establish that Z(w) defined in the previous section has polynomial
growth in a vertical strip 11

18 + ε ≤ <(w) ≤ 1 + ε, with ε a small positive number. As we shall
see, an important point is that the exponent of |=(w)| in our bound is independent of the fixed
parameter α.

We begin by specializing the Poincaré series as follows. At the archimedean place ν0, take

(3.1) ϕ
ν0
(n) = 21−w

√
π

Γ(w)(1 + x2)−
w
2 F (w

2 , w
2 ; 1

2 + w; 1
1+x2 )

Γ(w + 1
2 )

(
n =

(
1 x
0 1

)
∈ Nν0

)
where, as usual,

F (α, β; γ; z) =
Γ(γ)

Γ(α)Γ(β)
·
∞∑

m=0

1
m!

Γ(α + m)Γ(β + m)
Γ(γ + m)

zm (|z| < 1)
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is the Gauss hypergeometric function. This corresponds precisely to the choice made by Good in
[G2] (see also [DG1]), just presented in a form more convenient for us. Recall that we are assuming
ν0 ≈ R. At all the other archimedean places, we shall still keep the choice made in the previous
section (i.e., given by (1.2) with wν = α).

Notice that with the parameter choices in the hypergeometric function in (3.1), the series
representation is absolutely convergent for every real x. An easy estimate proves sufficient
admissibility of this data in the sense defined above. In fact, the series representation of the
hypergeometric function allows the following analysis to be reduced to the case of the simple
choice of data (1.2) considered in the previous section. The convenient assumption that there is
at least one real place is inessential, since, lacking any real place, for complex ν0 we can take

ϕ
ν0
(n) = 21−2w

√
π

Γ(w)(1 + |x|2)−w F (w,w; 2w; 1
1+|x|2 )

Γ(w − 1
2 )

(
n =

(
1 x
0 1

)
∈ Nν0

, x 6= 0
)

and

ϕν0
(n) = 0

(
if n =

(
1 0
0 1

))
This choice corresponds to (3.1) at complex places, but we do not need this unless the field is
totally complex.

An overview. Before justifying our statements and giving details of proofs, we find it useful to
first present the main ideas in our argument. Accordingly, if we denote the corresponding integral
(2.4) by J(v, w, α), it follows again by Proposition 2.6 and Theorem 3.12 in [Di-Ga] that for
<(v), <(w) > 1,

J(v, w, α) =
∑

χ∈ bC0,S

1
2πi

∫
<(s)=σ

L(χ−1| · |v+1−s, f̄) · L(χ| · |s, f)K∞(s, v, w, α, χ) ds

where
K∞(s, v, w, α, χ) = Kν0

(s, v, w, χν0
) ·
∏
ν|∞
ν 6=ν0

Kν(s, v, α, χν)

The local kernel Kν0
corresponding to archimedean data (3.1) can be continued by expanding the

hypergeometric function in a series and reducing the computation to the case (1.2). Furthermore,
for |t + tν0 | → ∞, it has an asymptotic expansion of type (A.7), with B replaced by a different
ratio of gamma functions B0(v, w, µ

f, ν0
). Taking v = 0 and σ = 1/2 in the above expression for

J(v, w, α), one can easily check that the sum over χ together with the vertical integral is absolutely
convergent for <(w) = δ > 1. Arguing as in the proof of Theorem 2.1 using the asymptotic formula
of Kν0

, we can split

J = J1 + J2 J2(0, w, α) = (2π)−1B0(0, w, µ
f, ν0

) [Z(w) − Z1(w) + Z3(w)]

with both Z1(w) and Z3(w) holomorphic in the half-plane <(w) > 11/18. Since the constant
C = C(η), where the split of J(0, w, α) was made, depends polynomially on w, it also follows
that Z1 and Z3 have both polynomial growth in w (obviously with exponents independent of α)
for <(w) = δ > 11/18. It turns out that the function B0(0, w, µ

f, ν0
) cos(πw/2) has polynomial
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growth, and therefore it suffices to show that cos(πw/2)J2(0, w, α) has polynomial growth in a
vertical strip 11

18 + ε ≤ δ ≤ 1 + ε. The precise reason for the choice of cos(πw/2) will become
apparent in the next paragraph.

So far, we did not really use the specific choice (3.1) of ϕ
ν0

. In fact, what we have said up
to this point equally holds for a variety of choices, including that made in the previous section.
As observed by Good in [G2] over the rationals, the choice (3.1) induces some sort of functional
equation relating the values of the corresponding function cos(πw/2)J(0, w) (Since Q has only
one archimedean place, there is no α.) as w → 1 − w. Using a spectral decomposition, we shall
establish a similar relation for cos(πw/2)J(0, w, α). We call it relation, since this function has way
too many poles in the vertical strip 0 ≤ <(w) ≤ 11/18 (which most probably form dense subsets
of the vertical lines <(w) = 1/4 and <(w) = 1/2) preventing a genuine meromorphic continuation.
Nevertheless, following [DG1], we shall consider a similar auxiliary function Jaux(w,α) such that
cos(πw/2)Jaux(w,α) has polynomial growth on the vertical lines <(w) = −ε, 1 + ε, and such
that when subtracted from J(0, w, α) leaves a meromorphic function in the whole vertical strip
−ε ≤ <(w) ≤ 1+ε with finitely many poles. In this strip we can now apply the Phragmen-Lindelöf
principle. To obtain the desired growth of Z(w), one just has to observe that cos(πw/2)Jaux(w,α)
has, in fact, polynomial growth in every vertical strip of finite width distant from the abundance
of poles, and hence in 11

18 + ε ≤ <(w) ≤ 1 + ε.
To be more precise, the Poincaré series built out of the archimedean data specified at the

beginning of this section has the spectral decomposition (1.5) (see (4.13) in [Di-Ga]). It follows
that Pé(g) has meromorphic continuation to a region in C2 containing v = 0, w = 1. As before,
when v = 0, it is holomorphic in the half-plane <(w) > 11/18, except for w = 1 where it has a pole
of order two. Then with respect to an orthonormal basis {F} of L2

cusp(ZAGk\GA) of everywhere
locally spherical cuspforms, we can write

J(w) = J(0, w, α) = M(w, f) +
∑
F

ρ̄
F
G

F∞
(w)L( 1

2 , F )〈F, |f |2〉
(3.2)

+
∑

χ

χ(d)
4πiκ

∫
<(s)= 1

2

Gχ∞
(s, w)L(1− s, χ)L(s, χ)

Λ(2− 2s, χ2)
|d|−(s−1/2)〈Es,χ, |f |2〉 ds

Here

G
F∞

(w) = G
F∞

(0, w) = Gν0
( 1

2 + iµ̄
F,ν0

; 0, w) ·
∏
ν|∞
ν 6=ν0

Gν( 1
2 + iµ̄

F,ν
; 0, α)

G
χ∞

(s, w) = Gν0
(1− s− itν0 ; 0, w) ·

∏
ν|∞
ν 6=ν0

Gν(1− s− it
ν
; 0, α)

M(w, f) = lim
v→0

(
R(w)〈Ev+1, |f |2〉 +

G1(1− v, v, w)
ζ∞(2v)

〈E1−v, |f |2〉
)

with
R(w) = R(w,α) =

∫
N∞

ϕ∞ and G1(1− v, v, w) = Gν0
(v; v, w) ·

∏
ν|∞
ν 6=ν0

Gν(v; v, α)
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We suppressed notation to J(w), as the parameter α plays no role at the moment, and v = 0 for
the remaining part.

Our immediate goal is to establish a relation connecting values of the function cos(πw/2)J(w)
as w → 1− w. We begin with the following

Lemma 3.3. With ϕ
ν0

defined by (3.1) and <(w) > 1, we have

∫
Nν0

ϕν0
=
√

π
Γ(w−1

2 )
Γ(w

2 + 1)

and

Gν0
(s; 0, w) = 4

Γ( 1−s
2 )Γ( s

2 )Γ(w+1
2 )

(w − s)(w + s− 1)Γ(w
2 )

(for 0 < <(s) < 1)

Proof: To compute the first integral, write the hypergeometric function in (3.1) by its series
representation. Since this series is absolutely convergent for all x ∈ R, we can interchange the sum
and integral. Using the well-known identity∫ ∞

−∞

(
1 + x2

)−w
2 −m

dx =
√

π
Γ(w−1

2 + m)
Γ(w

2 + m)
(for m = 0, 1, 2, 3, . . . )

we recognize the hypergeometric function F (w/2, (w−1)/2; 1/2+w; z) evaluated at z = 1. Applying
Gauss’ formula

F (α, β; γ; 1) =
Γ(γ)Γ(γ − α− β)
Γ(γ − α)Γ(γ − β)

(when <(γ) > <(α + β))

the identity follows after canceling some of the gamma functions involved.
The second identity can be verified in the same way, using formula (A.10) in the Appendix after

interchanging the sum and integral. �

Remark: More generally, for <(w) > 1 and −<(v) < <(s) < 1 +<(v), the same idea can be used
to compute Gν0

(s; v, w) as

π−v Γ(w+1
2 )Γ(v+1−s

2 )Γ(v+s
2 )Γ(v+w−s

2 )Γ(v+w+s−1
2 ) 3F2(w

2 , v+w−s
2 , v+w+s−1

2 ;w + 1
2 , v + w

2 ; 1)
Γ( 1

2 + w)Γ(v + w
2 )

where 3F2 is a generalized hypergeometric function, see [GR], page 1071. One can easily verify
that the series defining 3F2 above is absolutely convergent away from its poles.

From the lemma, we deduce that cos(πw/2)R(w), cos(πw/2)G
F∞

(w) and cos(πw/2)Gχ∞
(s, w) are

all invariant under w → 1 − w. To establish that M(w, f) appearing in the spectral identity of
J(w) satisfies the same invariance, first recall that

M(w, f) = lim
v→0

(
R(w)〈Ev+1, |f |2〉 +

G1(1− v, v, w)
ζ∞(2v)

〈E1−v, |f |2〉
)
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with

R(w) =
∫
N∞

ϕ∞ = 2r2 π
d
2

Γ(w−1
2 )Γ(α−1

2 )r1−1

Γ(w
2 + 1)Γ(α

2 )r1−1
· (α− 1)−r2

in view of the lemma. We can compute the limit by writing the Laurent expansions around v = 0
of the functions involved:

Ev+1 =
c

v
+ c0 + · · ·

and

G1(1− v, v, w)
ζ∞(2v)

E1−v =
Gν0

(v; v, w)
π−vΓ(v)

·
∏
ν|∞
ν 6=ν0

Gν(v; v, α)
ζν(2v)

E1−v

= (b0(w) + b1(w)v + · · · )(d0(α) + d1(α)v + · · · )
(
− c

v
+ c0 + · · ·

)
One can easily find that

b0(w) =
√

π
Γ(w−1

2 )
Γ(w

2 + 1)
and d0(α) =

(√
π

Γ(α−1
2 )

Γ(α
2 )

)r1−1

· [2π/(α− 1)]r2

Also, by considering the function (A.10) with s = v and w → w + 2m, expanding it in a power
series around v = 0, and then proceeding as in the lemma, we find that

b1(w) = π 2−w+2 · Γ(w − 1)
(1− w)Γ(1 + w

2 )2
=

2b0(w)
w(1− w)

Since R(w) = b0(w)d0(α), we obtain

lim
v→0

(
R(w)Ev+1 +

G1(1− v, v, w)
ζ∞(2v)

E1−v

)
= 2c0R(w) − c · (b0(w)d1(α) + b1(w)d0(α))

It follows now easily that cos(πw/2)M(w, f) is invariant as w → 1− w.
Following our plan, consider the auxiliary function Jaux(w) defined by

Jaux(w) =
∑
F

ρ̄
F
Gaux

F∞
(w)L( 1

2 , F )〈F, |f |2〉
(3.4)

+
∑

χ

χ(d)
4πiκ

∫
<(s)= 1

2

Gaux
χ∞

(s, w)L(1− s, χ)L(s, χ)

Λ(2− 2s, χ2)
|d|−(s−1/2)〈Es,χ, |f |2〉 ds

where Gaux
F∞

and Gaux
χ∞

are obtained by just replacing Gν0
in the products defining G

F∞
and Gχ∞

above
by the function

(3.5) Gaux
ν0

(s;w) := π 8−w+1 · Γ(2w − 1)
Γ(w

2 )Γ(w + 1
2 )
·
[
Γ
(1− s

2

)
Γ
(w − s

2

)
+ Γ

(s

2

)
Γ
(w + s− 1

2

)]
For instance,

Gaux
F∞

(w) = Gaux
ν0

( 1
2 + iµ̄

F,ν0
;w) ·

∏
ν|∞
ν 6=ν0

Gν( 1
2 + iµ̄

F,ν
; 0, α)

With this notation, we establish the following propositions:
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Proposition 3.6. For ε > 0 sufficiently small, the difference

H(w) := J(w) − Jaux(w) = M(w, f) +
∑
F

ρ̄
F
(G

F∞
(w)− Gaux

F∞
(w))L( 1

2 , F )〈F, |f |2〉

+
∑

χ

χ(d)
4πiκ

∫
<(s)= 1

2

(Gχ∞
(s, w)− Gaux

χ∞
(s, w))L(1− s, χ)L(s, χ)

Λ(2− 2s, χ2)
|d|−(s−1/2)〈Es,χ, |f |2〉 ds

restricted to 11/18 < <(w) ≤ 1 + ε, extends holomorphically to the whole vertical strip −ε ≤
<(w) ≤ 1 + ε, except for at most w = 0, 1/2, 1, where it may have poles. For w 6= 0, 1/2, 1 in this
strip, the expression in the right is absolutely convergent.

Proof: By the above computation, M(w, f) is clearly holomorphic in the strip −ε ≤ <(w) ≤ 1 + ε,
except for w = 0, 1 where it has poles. Note that w = 1 is a double pole.

To analyze the remaining part, remark that, by design, the function Gaux
ν0

cancels the relevant
poles of Gν0

in the region we are interested in. Specifically, using the expression of Gν0
(s; 0, w) in

Lemma 3.3, it follows that
Gν0

(s; 0, w)− Gaux
ν0

(s;w)

is holomorphic as a function of w around w = s, w = 1 − s, for s 6= 1/2, and as a function of s
around s = w, s = 1− w, for w 6= 1/2. Applying this with s = 1

2 + iµ̄
F,ν0

, it follows that

G
F∞

(w) − Gaux
F∞

(w) = [Gν0
( 1

2 + iµ̄
F,ν0

; 0, w) − Gaux
ν0

( 1
2 + iµ̄

F,ν0
;w)] ·

∏
ν|∞
ν 6=ν0

Gν( 1
2 + iµ̄

F,ν
; 0, α)

is a holomorphic function for −ε ≤ <(w) ≤ 1 + ε, except for w = 1/2 where it has a pole. Recall
that we can assume |<(iµ

F,ν0
)| < 1/9 (see [K], [KS]).

The absolute convergence of the discrete part follows by combining the exponential decay of

ρ̄
F
(G

F∞
(w)− Gaux

F∞
(w))L( 1

2 , F )〈F, |f |2〉

in the archimedean parameters of F with the fact that the number of cuspforms with archimedean
data within a given bound grows polynomially, from Weyl’s Law [LV], or from the upper-bound of
[Do]. In fact, shortly we shall need that ρ̄

F
〈F, |f |2〉 grows at worst polynomially in the archimedean

data of F (and by the convexity bound, so does ρ̄
F
L( 1

2 , F )〈F, |f |2〉). This important observation
first made by Selberg in [Se], was proved by Sarnak in [Sa2].

On the continuous spectrum-part, the variable w can cross the vertical line of integration
<(s) = 1/2, for each χ, since by the above observation, the function

G
χ∞

(s, w) − Gaux
χ∞

(s, w) = [Gν0
(1− s− itν0 ; 0, w) − Gaux

ν0
(1− s− itν0 ;w)] ·

∏
ν|∞
ν 6=ν0

Gν(1− s− itν ; 0, α)

is holomorphic around s = 1 − w − itν0 , w − itν0 . Also, this function has no poles other than
w = 1/2 in the vertical strip −ε ≤ <(w) ≤ 1 + ε when <(s) = 1/2.
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To justify the absolute convergence of the sum and integral, we note that by standard estimates

L(1− s, χ)L(s, χ)
Λ(2− 2s, χ2)

· 〈Es,χ, |f |2〉

has at worst polynomial growth in |=(s)| and the archimedean parameters of χ; the exponential
decay of the twisted Rankin-Selberg convolution 〈Es,χ, |f |2〉 matches the exponential decay of the
gamma factors in Λ(2−2s, χ2). Since Gχ∞

(s, w)−Gaux
χ∞

(s, w) has exponential decay in |=(s)| and the
archimedean parameters of χ, the sum and integral are absolutely convergent for−ε ≤ <(w) ≤ 1+ε,
w 6= 1/2. �

Proposition 3.7. Fix a small positive ε, and write w = δ + iη. For 11/18 + ε ≤ δ ≤ 1 + ε, or
δ = −ε, and large |η|, we have the estimate

cos
πw

2
·

(∑
F

ρ̄
F
Gaux

F∞
(w)L( 1

2 , F )〈F, |f |2〉

)

+ cos
πw

2
·

∑
χ

χ(d)
4πiκ

∫
<(s)= 1

2

Gaux
χ∞

(s, w)L(1− s, χ)L(s, χ)

Λ(2− 2s, χ2)
|d|−(s−1/2)〈Es,χ, |f |2〉 ds

 �ε, α |η|Nδ

with a computable Nδ > 0 independent of α.

Proof: We begin by applying Sarnak’s estimate [Sa2] on integrals of triple products of automorphic
forms. That result, together with a convexity estimate, implies a polynomial bound for
ρ̄

F
L( 1

2 , F )〈F, |f |2〉 in the archimedean data of F . The exponent in the polynomial bound as well as
the implied constant is independent of F . An analogous fact occurs in the continuous part, where

L(1− s, χ)L(s, χ)
Λ(2− 2s, χ2)

〈Es,χ, |f |2〉 (s = 1
2 + it)

is bounded polynomially in |t + tν | with ν|∞. We remark that the continuous part estimate can
also be obtained by traditional methods. Applying Stirling’s asymptotic formula to the gamma
functions present in Gaux

F∞
and Gaux

χ∞
, we observe that the relevant terms of the expression in the

proposition are those corresponding to |µ
F,ν0

|, |t + tν0 | ≤ 2|η|, say. The remaining part of the
expression is negligible.

Recalling that

Gaux
ν0

(s;w) = π 8−w+1 · Γ(2w − 1)
Γ(w

2 )Γ(w + 1
2 )
·
[
Γ
(1− s

2

)
Γ
(w − s

2

)
+ Γ

(s

2

)
Γ
(w + s− 1

2

)]
it follows from Stirling’s asymptotic formula that

Gaux
ν0

( 1
2 + iµ̄

F,ν0
;w) �ε |η|N

′
δe−

π
2 |η| (for |µF,ν0

| ≤ 2|η|)

A similar estimate (with the same exponential decay) holds on the continuous side.
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The proposition follows immediately from Weyl’s Law [LV] (the upper-bound of [Do]
suffices). �

We can relate the functions J and Z by splitting, as in the previous section,

(3.8) J(w) = J1(w) + J2(w) J2(w) = (2π)−1B0(0, w, µ
f, ν0

) [Z(w) − Z1(w) + Z3(w)]

with both Z1(w) and Z3(w) holomorphic in the half-plane <(w) > 11/18. In fact, the local kernel
Kν0

determined by (3.1) has an asymptotic expansion which can be easily deduced from (A.7) in
the Appendix by representing the hypergeometric function in (3.1) by its series, and reducing to
the previous choice of ϕν0

. It follows that

(3.9) B0(0, w, µ
f, ν0

) = 2−w+1
√

π
Γ(w)

Γ( 1
2 + w)

·B(0, w, µ
f, ν0

)

where

B(v, w, µ) = 2w−2 π−v Γ(w+v+iµ+iµ̄
2 )Γ(w+v−iµ+iµ̄

2 )Γ(w+v+iµ−iµ̄
2 )Γ(w+v−iµ−iµ̄

2 )
Γ(w + v)

See also the Appendix. For holomorphic discrete series, see (3.1), (4.1) and Proposition 4.2 in
[DG1]. Using Stirling’s asymptotic formula, it can be observed that B0(0, w, µ

f, ν0
) cos(πw/2) is of

polynomial growth. Furthermore, the constant C = C(η), where the split of J(w) occurs, depends
polynomially on w (as explained in the Appendix). This fact was established for holomorphic
discrete series in [DG1], Proposition 4.2, and in general it follows by keeping track of all the
constants depending on w in the process of obtaining the asymptotic formula for Kν0

. Then by
their definitions (see the previous section), Z1 and Z3 are both of polynomial growth in w, for
<(w) = δ > 11/18, with exponents independent of α. Therefore, to achieve our goal, that is, the
function Z(w) is of polynomial growth, it suffices to show the same for cos(πw/2)J2(w).

To prove that cos(πw/2)J2(w) is of polynomial growth in a vertical strip 11
18 + ε ≤ δ ≤ 1 + ε

with small positive ε, consider the function cos(πw/2)(H(w) − J1(w)), where H(w) is defined in
Proposition 3.6. We shall see that this function has polynomial growth in −ε ≤ δ ≤ 1 + ε, away
from its (finitely many) poles. For 11/18 < δ ≤ 1 + ε, we have

(3.10) cos(πw/2) · (H(w) − J1(w)) = cos(πw/2) · (J2(w) − Jaux(w))

First, suppose that w = 1 + ε + iη. As B0(0, w, µ
f, ν0

) cos(πw/2) is of polynomial growth and
Z(w) = O(1) (w being in the region of absolute convergence of its defining sum and integral), it
follows from Proposition 3.7 that the right hand side of the above identity is polynomial in |η|.

Recall that J1(w) is defined by

J1(w) =
1
2π

∑
χ∈ bC0,S

∫
|t+tν0

|�C

|L( 1
2 + it, f ⊗ χ)|2K∞( 1

2 + it, 0, w, α, χ) dt (for <(w) > 1)

The integral representing the local kernel Kν0
( 1

2 + it, 0, w, χν0
) continues to −ε ≤ δ ≤ 1 + ε with

finitely many poles in this region (its poles coincide with those of B0(0, w, µ
f, ν0

)). Being a function
of t + tν0 and w, we can estimate Kν0

, for |t + tν0 | � C and w not a pole, as

Kν0
( 1

2 + it, 0, w, χν0
) �w, α

(
1 + |t + tν0 |

)−α (for −ε ≤ <(w) ≤ 1 + ε)
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See also the discussion in the Appendix. By a simple comparison with Z(α), we deduce that the
defining expression of J1(w) converges absolutely, away from the poles of Kν0

, throughout the strip.
Now assume w = −ε + iη. Using Proposition 3.6 and the invariance of cos(πw/2)M(w, f),

cos(πw/2)G
F∞

(w), cos(πw/2)G
χ∞

(s, w) as w → 1− w, we have

cos(πw/2) · (H(w) − J1(w)) = cos
π(1− w)

2
J(1− w) − cos(πw/2) J1(w)

− cos(πw/2) ·

(∑
F

ρ̄
F
Gaux

F∞
(w)L( 1

2 , F )〈F, |f |2〉

)

− cos(πw/2) ·

∑
χ

χ(d)
4πiκ

∫
<(s)= 1

2

Gaux
χ∞

(s, w)L(1− s, χ)L(s, χ)

Λ(2− 2s, χ2)
|d|−(s−1/2)〈Es,χ, |f |2〉 ds


In the right hand side, write J = J1+J2. As already observed, cos[π(1−w)/2]J2(1−w) is bounded
polynomially in |η|.

To see that

cos
π(1− w)

2
J1(1− w) − cos

πw

2
J1(w)

is also bounded polynomially, we use the fact that J1(w) can be expressed by its original
representation throughout the vertical strip −ε ≤ <(w) ≤ 1 + ε, except for finitely many poles of
the local kernel Kν0

( 1
2 + it, 0, w, χν0

). Since away from the poles and |t + tν0 | � C,

cos
π(1− w)

2
· Kν0

( 1
2 + it, 0, 1− w, χν0

) − cos
πw

2
· Kν0

( 1
2 + it, 0, w, χν0

) � (1 + |t + tν0 |)
A

|η|
B

for some constants A, B (see [DG1], Proposition 4.6, for holomorphic discrete series, and in general
by a similar idea), we have the estimate

cos
π(1− w)

2
J1(1− w) − cos

πw

2
J1(w) � (1 + C)

A+2
|η|

B

Z(α) (for α ≤ 2)

Recall that C = C(η) depends polynomially on w.
From Proposition 3.7, it follows now that cos(πw/2)(H(w)− J1(w)) is a function of polynomial

growth on the vertical line <(w) = −ε.
As H(w) and J1(w) have both finitely many poles in the strip −ε ≤ <(w) ≤ 1 + ε, we can

apply the Phragmen-Lindelöf principle. Accordingly, the function cos(πw/2)(H(w) − J1(w)) has
polynomial growth throughout the strip (away from its poles). In particular, for 11

18 +ε ≤ δ ≤ 1+ε,
the identity (3.10) implies that cos(πw/2)(J2(w)− Jaux(w)) has polynomial growth in this region,
and hence, so has cos(πw/2)J2(w) by Proposition 3.7.

From the above discussion, we obtain the main result of this section. This is contained in the
following

Theorem 3.11. For fixed small positive ε, the function Z(w) has polynomial growth in the half-
plane <(w) ≥ 11

18 + ε; on the vertical line <(w) = 11
18 + ε,

Z(w) �ε, α |η|Mε (w = 11
18 + ε + iη)

with a computable Mε > 0 independent of α.
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-

Remark. If one wants to optimize the exponent Mε in Theorem 3.11, it is necessary to invoke
[HL] and [HR], or an extension of [BR1]. In this direction, see [Kr-St].

§4. Subconvexity

Fix a cuspform f on GL2(k) for a number field k of degree d over Q. Recall that the t–aspect
convexity bound on the standard L–function L(s, f) is

L( 1
2 + it, f) �ε (1 + |t|)2d· 14+ε = (1 + |t|) d

2 +ε (for all ε > 0)

We break convexity in the t–aspect by decreasing the exponent, proving

Main Theorem. Fix a number field k of degree d over Q, and a cuspform f for GL2(k). For a
computable constant ϑ < 1,

L( 1
2 + it, f) �ε (1 + |t|)

d−1+ϑ
2 +ε (for all ε > 0)

Some further preparation is required before we can begin the proof of the Main Theorem.
For convenience, assume that k has at least one real place ν0 , although this assumption is

inessential. Given a grossencharacter χ of k, let

qν(χν , t) =

 1 + |t + tν | (for ν real)

1 + `2ν + 4(t + tν)2 (for ν complex)

with data tν and `ν attached to the local component χν of χ by
χν(y) = |y|itν (ν real, y > 0)

χν(z) =
(

z
|z|
)`ν

|z|itν (ν complex)

The archimedean part of the analytic conductor of L(s, χ) is Q(χ, t) =
∏

ν|∞ qν(χν , t). As f is
fixed, ignore the dependence on the (archimedean) local parameters of f , and approximate the
archimedean part of the analytic conductor of L(s, f ⊗ χ) by Q(χ, t)2. Fix real 1 < α ≤ 2, as
before. Instead of the (w/2)th power of the archimedean part of analytic conductor of L(s, f ⊗χ),
we use

qν0
(χν0

, t)−w ·
∏

ν 6=ν0

Kν( 1
2 + it, 0, α, χν)

Abbreviate

q0(χ, t) = qν0
(χν0

, t) κ0(χ, t) = Πν 6=ν0 Kν( 1
2 + it, 0, α, χν)

Recall that

Z(w) =
∑

χ∈ bC0,S

∫ +∞

−∞
|L( 1

2 + it, f ⊗ χ)|2 · κ0(χ, t)
q0(χ, t)w

dt
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In the sequel, Ĉ0,S will be implicit, and we will refer to the combination of sum over χ and integral
over t simply as the integral.

From Theorem 2.1, the integral for Z(w) converges absolutely for <(w) > 1, with analytic
continuation to <(w) > 11

18 , except for a pole of order 2 at w = 1. By Theorem 3.11, away from
the pole at w = 1, the function Z(w) has polynomial growth vertically on every vertical strip inside
11
18 + ε ≤ <(w) ≤ α. The function Z(w) is bounded for 1+ ε ≤ <(w) ≤ α. Via Phragmen-Lindelöf,
choose 11

18 < δ0 < 1 such that Z(w) has polynomial growth of exponent < 1
2 in the vertical strip

δ0 ≤ <(w) ≤ 1 + ε. Notice that this assures that η → Z(δ0 + iη)/(δ0 + iη) is square-integrable on
R. For instance, for fixed sufficiently small ε > 0 (ε = 10−3, say) one can take any

1−
(

7− 18ε

36 Mε

)
< δ0 < 1

where Mε is the exponent in Theorem 3.11. Note that this is independent of the parameter α,
since (as in Theorem 3.11), the constant Mε is independent of α. We will make repeated use of the
fact that, for real w > 1, the kernel Kν( 1

2 + it, 0, w, χν) is positive, with ν 6= ν0 , and is dominated
by qν(χν , t)−w. See the Appendix.

Let R be the rectangle with vertices α ± iT and δ0 ± iT , traced counter-clockwise, with T
eventually going to +∞. On one hand, the integral over R can be evaluated by Cauchy’s theorem,
as

1
2πi

∫
R

Z(w) xw

w
dw = xP (log x)

with a linear polynomial P . By choice of δ0, the integrals of Z(w) xw/w along the top and bottom
of the rectangle R go to 0 as T → +∞.

On the other hand, from [D], recall Perron’s formula

1
2πi

∫ α+iT

α−iT

xw

w
dw =

{
1 (for x > 1)
0 (for x < 1) + xα ·Oα

(
min

{
1,

1
T | log x|

})
Apply the identity, with x replaced by x/q0(χ, t), to rewrite the integral as

1
2πi

∫ α+iT

α−iT

Z(w) xw

w
dw

=
∑

χ

∫ +∞

−∞
|L( 1

2 + it, f ⊗ χ)|2 · κ0(χ, t) ·
(

1
2πi

∫ α+iT

α−iT

(
x/q0(χ, t)

)w
w

dw

)
dt

=
∑

χ

∫
q0 (χ,t)≤x

|L( 1
2 + it, f ⊗ χ)|2 · κ0(χ, t) dt + E(x, T )

where the error term E(x, T ) is estimated by the corresponding sum of integrals

E(x, T ) �α

∑
χ

∫ +∞

−∞
|L( 1

2 + it, f ⊗ χ)|2 · κ0(χ, t) ·
( x

q0(χ, t)

)α

min
{

1,
1

T · |log x/q0(χ, t)|

}
dt

Lemma 4.1. For fixed x > 0,
lim

T→+∞
E(x, T ) = 0
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Proof: This uses the positivity of the kernels Kν( 1
2 + it, 0, α, χv) (for ν 6= ν0) and their bounds by

qν(χ, t)−α. In the estimate on E, for each χ break the integral over t into two pieces

{t :
1

T · |log x/q0(χ, t)|
≤ 1√

T
} and {t :

1
T · |log x/q0(χ, t)|

≥ 1√
T
}

The sum of the integrals in the first case is dominated by

xα

√
T
·
∑

χ

∫
R
|L( 1

2 + it, f ⊗ χ)|2 · κ0(χ, t)
q0(χ, t)α dt =

1√
T
· xα · Z(α)

Since the integral for Z(α) converges absolutely, the factor 1/
√

T assures that the integral in the
first subset goes to 0 as T becomes large, for fixed x.

The second case breaks into two parts. Since the integral for Z(w) converges absolutely for
<(w) > 1, the definition of absolute convergence implies that the tail of the integral goes to 0.
That is, the integral over the set in which Q(χ, t) ≥ log T goes to 0 as T becomes large, so the
same is certainly true for the integral over the subset meeting the second case.

For the part of the second case where Q(χ, t) ≤ log T, observe that, for each u > 0, one trivially
has ∑

χ

∫
Q(χ,t)≤u

1 � polynomial bound in u

In fact, there is a bound of � u1+ε, although for the present argument any polynomial bound in
u will suffice. Apply this bound with u = log T, and use the convexity bound of L( 1

2 + it, f ⊗ χ),
to obtain a bound on the integrand logarithmic in T . The defining condition for the second case
implies

x · e−1/
√

T < 1 + |t + tν0 | < x · e1/
√

T

which restricts t to a set of measure � 1/
√

T . Thus, this part of the second case also goes to 0 for
large T . This proves the Lemma 4.1. �

Thus, taking the limit as T becomes large produces an equality of the integral along <(w) = α
with a sum of integrals over regions q0(χ, t) ≤ x. Thus, so far, we have

(4.2)
∑

χ

∫
q0 (χ,t)≤x

|L( 1
2 + it, f ⊗ χ)|2 · κ0(χ, t) dt = xP (log x) +

1
2πi

∫ δ0+i∞

δ0−i∞

Z(w) xw

w
dw

Theorem 4.3. We have the estimate

1
2πi

∫ δ0+i∞

δ0−i∞

Z(w) xw

w
dw �α x

2δ0+1
3 · log x

and thus, ∑
χ

∫
q0 (χ,t)≤x

|L( 1
2 + it, f ⊗ χ)|2 · κ0(χ, t) dt = xP (log x) + O

(
x

2δ0+1
3 log x

)
Proof: Let E(x) denote the first integral in the statement of the theorem, w = δ0 + iη, and
x = e−2πu. Then

E(e−2πu) =
1
2π

∫ +∞

−∞
e−2πiuη · f(η) · e−2πuδ0 dη
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is essentially a Fourier transform of f(η) = Z(δ0 + iη)/(δ0 + iη) in η, namely,

2π · (e−2πu)−δ0 · E(e−2πu) = f̂(u)

By our choice of δ0, we have convergence of∫ +∞

−∞

∣∣∣∣Z(δ0 + iη)
δ0 + iη

∣∣∣∣2 dη

Then Plancherel gives

1 �
∫ +∞

−∞
|f(η)|2 dη =

∫ +∞

−∞
|f̂(u)|2 du = (2π)2

∫ ∞

−∞
|(e−2πu)−δ0 · E(e−2πu)|2 du

= 2π

∫ ∞

0

y−2δ0 · |E(y)|2 dy

y
= 2π

∫ ∞

0

y−(2δ0+1) · |E(y)|2 dy

since du = dy/2πy. The elementary estimate

1 �
∫ x

0

|E(y)|2 y−(2δ0+1) dy ≥
∫ x

0

|E(y)|2 x−(2δ0+1) dy = x−(2δ0+1)

∫ x

0

|E(y)|2 dy

gives

(4.4)
∫ x

0

|E(y)|2 dy � x2δ0+1

The latter yields a pointwise estimate with the exponent reduced by a factor of 3, by an argument
reminiscent of a part of [IM], as follows. That is, we claim that

E(x) � x
2δ0+1

3 · log x

Again, use the positivity of Kν( 1
2 + it, 0, α, χν) with real α > 1, for ν 6= ν0 . Let

I(χ, x) = {t : q0(χ, t) ≤ x}

For any χ and 0 < x ≤ y, certainly I(χ, x) ⊂ I(χ, y). As

E(y) =
∑

χ

∫
I(χ, y)

|L( 1
2 + it, f ⊗ χ)|2 · κ0(χ, t) dt − y P (log y)

and because the integrand is positive,

(4.5) E(y)− E(x) ≥ −
(
y P (log y)− xP (log x)

)
(for 0 < x ≤ y)

Fix x ≥ 3. Replacing y by x + u in this inequality, with 0 ≤ u ≤ x, we have

E(x) ≤ E(x + u) + C · u · log x (for some positive C)
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since P is a linear polynomial. Similarly, replacing x by x− u with 0 ≤ u < x and y by x gives

E(x) ≥ E(x− u)− C · u · log x

with the same constant C.
Integrating these inequalities in u, over 0 ≤ u ≤ H, with 0 < H ≤ x, gives

(4.6)
1
H

∫ x

x−H

E(t) dt− CH · log x ≤ E(x) ≤ 1
H

∫ x+H

x

E(t) dt + CH · log x

with a new constant C (half of the previous constant C). The second of these inequalities is applied
for E(x) ≥ 0 and the first for E(x) ≤ 0.

Indeed, for E(x) ≥ 0, the estimate∫ x

0

|E(y)|2 dy � x2δ0+1

in (4.4) together with

E(x) ≤ 1
H

∫ x+H

x

E(t) dt + CH · log x

in (4.6) gives

E(x)2 ≤ 2
H2

(∫ x+H

x

E(t) dt

)2

+ 2C2H2 · (log x)2 ≤ 2
H

∫ x+H

x

|E(t)|2 dt + 2C2H2 · (log x)2

� 1
H
· x2δ0+1 + H2 · (log x)2

using (a+b)2 ≤ 2(a2 +b2), and Cauchy-Schwarz. Setting H = x
2δ0+1

3 , and recalling that E(x) ≥ 0,
we obtain

E(x) � x
2δ0+1

3 · log x

A similar argument applies when E(x) ≤ 0, proving the theorem. �

Proof of the Main Theorem: Recall that κ0(χ, t) is positive, for all χ, t. Let

(4.7) S(x) =
∑

χ

∫
q0 (χ,t)≤x

|L( 1
2 + it, f ⊗ χ)|2 κ0(χ, t) dt

For H > 0 and fixed χ, certainly I(χ, x) ⊂ I(χ, x + H). Also, the integrands are positive. For
χ = 1, with ν0 real, q0(1, t) = 1 + |t|. Ignoring all terms but for trivial χ, and taking

(4.8) x
2δ0+1

3 � H � x
2δ0+1

3

we have

(4.9)
∫ x+H

x

|L( 1
2 + it, f)|2 κ0(1, t) dt ≤ S(x + H + 1)− S(x)
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= (x + H + 1) P (log(x + H + 1))− xP (log x) + E(x + H + 1)− E(x)

� x
2δ0+1

3 · log x

where the last inequality comes from Theorem 4.3.
Recall that δ0 is independent of α, and that κ0(1, t) � (1 + |t|)−(d−1)α (see the lower-bound

(A.9) in the Appendix). Choosing α = 1 + ε
2d−2 , we obtain

(4.10)
∫ x+H

x

|L( 1
2 + it, f)|2 dt � (x + H)(d−1)α · x

2δ0+1
3 · log x

� xd−1+
2δ0+1

3 + ε
2 · log x �ε xd−1+

2δ0+1
3 +ε

The short-interval estimate (4.10) yields a pointwise estimate, via Cauchy’s theorem and use of
the functional equation of L(s, f), by an argument broadly analogous to that at the end of [G1]
for GL2(Q), yielding the conclusion of the Main Theorem. �

§Appendix

Here we record some explicit formulas and related estimates used throughout. These facts
were discussed in detail in [DG1] and [DG2]. In the holomorphic discrete series case everything is
worked out completely in [DG1]. For the waveform case, the corresponding results can be obtained
analogously using the computations made in [DG2]. Accordingly, we organize these facts for the
convenience of the reader. Throughout this appendix, we refer very precisely to certain points in
[DG2].

First, the kernel K∞(s, v, χ) appearing on the moment side (1.4) decomposes over the infinite
primes

K∞(s, v, χ) =
∏
ν|∞

Kν(s, v, χν)

We shall discuss some properties of Kν(s, v, w, χν), with the choice of archimedean data
corresponding to (1.2). When archimedean data is given by (3.1), the study of the corresponding
kernel Kν can be reduced to that for the choice (1.2). Thus, our conclusions concerning Kν for the
choice (1.2) hold equally for Kν attached to (3.1).

For ν complex, we have

(A.1) Kν(s, v, w, χν) = 2−4v−1π1−2vK`ν
(2s + 2itν , 2v, 2w)

where K`(s, v, w) is defined in [DG2], page 71, (4.15). In that formula for K`(s, v, w), one should
also replace µ and ν by 2µ

f, ν
and 2µ̄

f, ν
, respectively.

For ν real, we have

(A.2) Kν(s, v, w, χν) = 21−vπ−vK− 1
2
(s + 1

2 + itν , v, w)

This follows easily by comparing (1.9), (1.17), and (1.18) transformed by (2.2) in [Z2] with the
formula for K`(s, v, w) (following (4.15)) in [DG2]. Here again K− 1

2
(s + 1

2 + itν , v, w) in the right
must have the parameters µ, ν replaced by µ

f, ν
, µ̄

f, ν
, respectively.
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In what follows we shall refer to specific facts about K`(s, v, w) discussed in [DG2]; the
corresponding properties of the local kernel Kν(s, v, w, χν) can then be easily translated using
(A.1) and (A.2).

From the representation (4.17), page 72, it follows that K`(s, v, w) is holomorphic in the region
D consisting of (s, v, w) ∈ C3 such that there exist δ1 and δ2 for which

(A.3) −σ ±<(iµ)
2

< δ1 <
`

2
, −2 + <(v)− σ ±<(iν)

2
< δ2 <

`

2
, −1 < δ1 + δ2 <

<(w)− 2
2

Here ` is either −1/2 or a non-negative integer. In particular, if <(s) = 1/2 and v = 0, the
local kernel Kν(s, 0, w, χν) is holomorphic for <(w) > 2/9. Note that we used Kim-Shahidi bound
|<(iµ

f,ν
)| < 1/9 (see [K], [KS]) for the local archimedean parameters of f. Using (4.17), one can

also meromorphically continue K`(s, v, w) by shifting the contour in δ1, say, to the right. To see
this, assume ` = −1/2, s = 1 + iT, v = 0, |<(iµ)| ≤ 1/9 and ν = µ̄ in (6.1) on page 76. By
(A.3), we can take δ1 = δ2 = − 1

2 + 1
18 + ε, and <(w) = 2

9 + 6ε with small positive ε. Aiming to
continue K−1/2 in w, shift the contour δ1 = − 1

2 + 1
18 + ε slightly to the right such that the only

pole crossed is ξ1 = −1 − ξ2 + w/2. The shifted integral is holomorphic for −c ≤ <(w) ≤ 2
9 + 6ε

with a small positive constant c. The residue at ξ1 = −1− ξ2 + w/2 is given in (6.25) on page 82.
Shifting again to the right in (6.25) such that the only poles crossed are at ξ2 = (w − 1 ± iµ)/2,
one obtains the meromorphic continuation of K−1/2 for <(w) ≥ −c. It also follows that the poles
of K−1/2 in this region coincide with those of B(0, w, µ) in (A.7). This last fact also holds for the
local kernel Kν0

( 1
2 + it, 0, w, χν0

) attached to (3.1), by expanding the hypergeometric function in
its series, thereby reducing to the immediately previous discussion.

Combining (4.13), (4.14) with ν = µ̄, and (4.15) on page 71, one can see that

(A.4) K`(1 + it, 0, w) =

π
2∫

0

(cos φ)w−1 sinφ · |Vµ, `(t, φ)|2 dφ

where

Vµ, `(t, φ) = 2−1+it cos−`−1−it(φ) sin`(φ) ·
Γ( `+1+it−iµ

2 )Γ( `+1+it+iµ
2 )

Γ(` + 1)
(A.5)

· F
(

` + 1 + it− iµ

2
,

` + 1 + it + iµ

2
; ` + 1;− tan2(φ)

)
Initially, the integral representation (A.4) holds for <(w) sufficiently large. Then, by Landau’s
Lemma (adapting the proof of Theorem 6, page 115 in [C], as in section §5 of [Di-Ga]), the
holomorphy up to <(w) = 2/9 above implies that the integral representation holds for <(w) > 2/9.
Clearly, for real w > 2/9, the kernel in (A.4) is positive. This positivity was used repeatedly
throughout.

Recall from Section 4 that qν(χν , t) is defined to be

qν(χν , t) =

 1 + |t + tν | (for ν real)

1 + `2ν + 4(t + tν)2 (for ν complex)
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By Theorem 6.2, one has the following asymptotic expansions when |=(w)|2+ε � qν(χν , t) with
small ε > 0 : for ν complex,

(A.6) Kν(s, v, w, χν) = A(v, w, µ
f, ν

) · qν(χν , t)−w ·
[
1 + Oσ, v, w, µ

f, ν

(
qν(χν , t)−1/2

)]
where A(v, w, µ

f, ν
) is the ratio of gamma functions

22w−2v−4 π1−2v Γ(w + v + iµ + iµ̄)Γ(w + v − iµ + iµ̄)Γ(w + v + iµ− iµ̄)Γ(w + v − iµ− iµ̄)
Γ(2w + 2v)

and, for ν real,

(A.7) Kν(s, v, w, χν) = B(v, w, µ
f, ν

) · qν(χν , t)−w ·
[
1 + Oσ, v, w, µ

f,ν

(
qν(χν , t)−1

) ]
where

B(v, w, µ) = 2w−2 π−v Γ(w+v+iµ+iµ̄
2 )Γ(w+v−iµ+iµ̄

2 )Γ(w+v+iµ−iµ̄
2 )Γ(w+v−iµ−iµ̄

2 )
Γ(w + v)

The dependence upon =(w) in these asymptotics is polynomial (in fact, essentially quadratic), and
the dependence upon <(w) is continuous. This is explicit in Lemma 6.5 on page 77 and in the
proof of Lemma 6.6 on page 82. The underlying point in the above asymptotics is the asymptotic

Γ(s + a)
Γ(s)

= sa
(
1 +O

(
|a|2

|s|

))
for |a| = o(

√
|s|). This is used in the proof of Lemma 6.7.

We have an estimate

(A.8) Kν( 1
2 + it, 0, w, χν) �w qν(χν , t)−δ

When |=(w)|2+ε � qν(χν , t), with small ε > 0, and <(w) > 2/9, inequality (A.8) follows from
(A.6) and (A.7). When |=(w)|2+ε � qν(χν , t), the inequality (A.8) holds wherever Kν is defined
(e.g., away from its poles).

For C < qν(χν , t) with sufficiently large positive C, and real w > 2/9, it also follows from (A.6)
and (A.7) that

(A.9) qν(χν , t)−w �w Kν( 1
2 + it, 0, w, χν)

Using the integral representation (A.4), and the fact that the hypergeometric function in (A.5) is
not identically 0, it follows that the inequality (A.9) also holds for qν(χν , t) ≤ C and real w > 2/9.

In Section 3, we needed specific choices of archimedean data, producing corresponding functions
Gν on the spectral side (3.2) of the identity. For ϕν given by (1.2), the corresponding Gν on the
spectral side is, for ν real,

(A.10) Gν(s; v, w) = π−v Γ
(

v+1−s
2

)
Γ
(

v+w−s
2

)
Γ
(

v+s
2

)
Γ
(

v+w+s−1
2

)
Γ
(

w
2

)
Γ
(
v + w

2

)
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and, at complex places ν,

(A.11) Gν(s; v, w) = (2π)−2v Γ(v + 1− s)Γ(v + w − s)Γ(v + s)Γ(v + w + s− 1)
Γ(w)Γ(2v + w)

When the field k is totally complex, we take

(A.12)

ϕ
ν0
(n) = 21−2w

√
π

Γ(w)(1 + |x|2)−w F (w,w; 2w; 1
1+|x|2 )

Γ(w − 1
2 )

(
n =

(
1 x
0 1

)
∈ Nν0

, x 6= 0
)

and

ϕν0
(n) = 0

(
if n =

(
1 0
0 1

))
With this choice, the archimedean integrals in (1.5) at ν0 (i.e., the analog of Lemma 3.3) are
computed as

(A.13)
∫
Nν0

ϕν0
= π · 2w − 1

w(w − 1)

and

(A.14) Gν0
(s; 0, w) = (w − 1

2 ) ·
Γ(1− s)Γ(s)

(w − s)(w + s− 1)
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