

1. Rigged Hilbert spaces from pairs

A pair of symmetric, semi-bounded operators S,T on a Hilbert space \mathfrak{B}^0 gives rise to a \textit{rigged Hilbert space} structure when the operators have a common domain $D = D_S = D_T$ dense in \mathfrak{B}^0 stabilized by them, that is, when $S(D) \subset D$ and $T(D) \subset D$, as follows.

Without loss of generality, suppose that S,T are non-negative and $S + T \geq 1$, in the sense that

$$
\langle Sv, v \rangle_{\mathfrak{B}^0} \geq 0 \quad \langle Tv, v \rangle_{\mathfrak{B}^0} \geq 0 \quad \langle (S + T)v, v \rangle_{\mathfrak{B}^0} \geq \langle v, v \rangle_{\mathfrak{B}^0}
$$

(for all $v \in D$)

The \mathfrak{B}^1-norm relative to S,T is

$$
\langle v, w \rangle_{\mathfrak{B}^1} = \langle (S + T)v, w \rangle_{\mathfrak{B}^0}
$$

and \mathfrak{B}^1 is the completion of D with respect to this norm. The \mathfrak{B}^k-norm is described inductively:

$$
\langle v, w \rangle_{\mathfrak{B}^k} = \langle Sv, Sw \rangle_{\mathfrak{B}^{k-2}} + \langle Tv, Tw \rangle_{\mathfrak{B}^{k-2}}
$$

(for $v, w \in D$ and $k \geq 2$)

and \mathfrak{B}^k is the Hilbert-space completion. Let $\mathfrak{B}^{+\infty}$ be the projective limit. The maps $\mathfrak{B}^k \to \mathfrak{B}^{k-1}$ induced by the denseness of D in every \mathfrak{B}^k are continuous injections with dense images, thus giving a \textit{rigged Hilbert-space}

$$
\ldots \to \mathfrak{B}^k \to \mathfrak{B}^{k-1} \to \ldots \to \mathfrak{B}^2 \to \mathfrak{B}^1 \to \mathfrak{B}^0 = V
$$

By design, S and T are continuous $D \to D$ with \mathfrak{B}^k-topology on the source and \mathfrak{B}^{k-2}-topology on the target:

$$
|Sv|_{\mathfrak{B}^{k-2}}^2 \leq |(Sv)|_{\mathfrak{B}^{k-2}}^2 + |Tv|_{\mathfrak{B}^{k-2}}^2 = |v|_{\mathfrak{B}^k}^2
$$

(for $v \in D$)

and similarly for T. Thus, S,T extend by continuity to continuous maps $S^+, T^+ : \mathfrak{B}^k \to \mathfrak{B}^{k-2}$ for all $k \geq 2$, and, then, to continuous maps $\mathfrak{B}^{+\infty} \to \mathfrak{B}^{+\infty}$. The triangle inequality shows continuity of $S + T$:

$$
|(S + T)v|_{\mathfrak{B}^{k-2}} \leq |Sv|_{\mathfrak{B}^{k-2}} + |Tv|_{\mathfrak{B}^{k-2}} \leq 2|v|_{\mathfrak{B}^k}
$$

(for $v \in D$)

so $S + T$ likewise extends by continuity to $(S + T)^+ : \mathfrak{B}^k \to \mathfrak{B}^{k-2}$ for all $k \geq 2$, and then to $\mathfrak{B}^{+\infty} \to \mathfrak{B}^{+\infty}$.

Non-commutative polynomials in S,T are to be understood as having domain D. Non-commutative monomials Q of total degree d are proven continuous $\mathfrak{B}^k \to \mathfrak{B}^{k-d}$ by induction on d, for Q of degree d giving a continuous linear map $\mathfrak{B}^k \to \mathfrak{B}^{k-d}$ for all $k \geq d$,

$$
|(Q \cdot v)|_{\mathfrak{B}^{k-d-1}}^2 = |(Qv)|_{\mathfrak{B}^{k-d-1}}^2 \ll Q |Sv|_{\mathfrak{B}^{k-1}}^2 \leq |v|_{\mathfrak{B}^k}^2
$$

(for $v \in D$)

and similarly for $Q \cdot T$. Symmetry of S,T shows that this induction gives the same outcome as induction by adding factors on the left. The triangle inequality gives an induction on the number of summands in Q to prove a similar continuity for all non-commutative polynomials: for a polynomial Q of total degree d, and M a monomial of total degree at most d,

$$
|(Q + M)v|_{\mathfrak{B}^{k-d}} \leq |Qv|_{\mathfrak{B}^{k-d}} + |Mv|_{\mathfrak{B}^{k-d}} \ll Q,M |v|_{\mathfrak{B}^k}
$$

(for $v \in D$)
Thus, all polynomials \(Q \) in \(S, T \) of total degree at most \(d \) extend by continuity to \(Q^\# : \mathcal{B}^k \rightarrow \mathcal{B}^{k-d} \), and to continuous maps of \(\mathcal{B}^{+\infty} \) to itself.

2. Large extensions of operators

For Hilbert spaces with a **complex conjugation** stabilizing \(D \), operators \(S, T \) commuting with the conjugation have **large extensions**, still denoted \(S^\#, T^\# \), to the dual of \(\mathcal{B}^{+\infty} \).

For \(k \geq 1 \), let \(\mathcal{B}^{-k} \) be the complex-linear Hilbert-space dual of \(\mathcal{B}^k \), with hermitian inner product \(\langle , \rangle_{\mathcal{B}^{-k}} \) coming from the norm

\[
|\lambda|_{-k} = \sup_{v \in \mathcal{B}^k : |v| \leq 1} |\lambda v| \quad \text{ (for } \lambda \in \mathcal{B}^{-k})
\]

The natural **complex-bilinear** pairing on \(\mathcal{B}^k \times \mathcal{B}^{-k} \) is

\[
\langle , \rangle_{\mathcal{B}^k \times \mathcal{B}^{-k}} : \mathcal{B}^k \times \mathcal{B}^{-k} \rightarrow \mathbb{C} \quad \text{ by } \quad \langle v, \lambda \rangle_{\mathcal{B}^k \times \mathcal{B}^{-k}} = \lambda(v) \quad \text{ (} v \in \mathcal{B}^k \text{ and } \lambda \in \mathcal{B}^{-k})
\]

The maps

\[
\ldots \rightarrow \mathcal{B}^k \rightarrow \mathcal{B}^{k-1} \rightarrow \ldots \rightarrow \mathcal{B}^2 \rightarrow \mathcal{B}^1 \rightarrow \mathcal{B}^0
\]

give Hilbert-space adjoints

\[
(\mathcal{B}^0)^\ast \rightarrow \mathcal{B}^{-1} \rightarrow \mathcal{B}^{-2} \rightarrow \ldots \rightarrow \mathcal{B}^{-(k-1)} \rightarrow \mathcal{B}^{-k} \rightarrow \ldots
\]

These two collections of maps can be spliced together, and the hermitian inner products compared with the complex-bilinear pairings, when when \(\mathcal{B}^0 \) has a complex-conjugate-linear conjugation map, as follows. The conjugation \(v \rightarrow \overline{v} \) should have expected properties: \(\overline{v} = v, \overline{\alpha v} = \overline{\alpha} \cdot \overline{v} \) for complex \(\alpha \), and \(\langle v, \overline{w} \rangle_{\mathcal{B}^0} = \overline{\langle w, v \rangle_{\mathcal{B}^0}} \). Suppose \(D \) is stabilized by \(v \rightarrow \overline{v} \), and that \(S \) and \(T \) commute with \(v \rightarrow \overline{v} \).

A compatible conjugation map is induced on \(\mathcal{B}^k \) and \(\mathcal{B}^{-k} \), and \(i : D \rightarrow \mathcal{B}^{+1} \) and \(j : \mathcal{B}^{+1} \rightarrow \mathcal{B}^0 \) commute with the conjugation.

Using the conjugation on \(\mathcal{B}^0 \), let \(\Lambda : \mathcal{B}^0 \rightarrow (\mathcal{B}^0)^\ast \) be the complex-linear isomorphism of \(\mathcal{B}^0 \) with its complex-linear dual by \(\Lambda(x)(y) = \langle y, \overline{x} \rangle_{\mathcal{B}^0} = \langle x, \overline{y} \rangle_{\mathcal{B}^0} \). The continuous injection \(j : \mathcal{B}^{+1} \rightarrow \mathcal{B}^0 \) dualizes to \(j^\ast : (\mathcal{B}^0)^\ast \rightarrow \mathcal{B}^{-1} \) by \(j^\ast \mu(x) = \mu(jx) \) for \(\mu \in (\mathcal{B}^0)^\ast \) and \(x \in \mathcal{B}^{+1} \), and we have the splicing

\[
\mathcal{B}^{+\infty} \rightarrow \mathcal{B}^{+2} \rightarrow \mathcal{B}^{+1} \rightarrow \mathcal{B}^0 \rightarrow \ldots \rightarrow \mathcal{B}^{-1} \rightarrow \ldots
\]

with \(\mathcal{B}^{+\infty} = \text{colim} \mathcal{B}^{-k} \) the strong dual of \(\mathcal{B}^{+\infty} \). [1]

[2.0.1] Note: Thus, for \(k, \ell \geq 0 \), letting \(\varphi : \mathcal{B}^k \rightarrow \mathcal{B}^{-\ell} \) be the injective map induced by the identity map \(D \rightarrow D \), the comparison of hermitian and complex-bilinear forms is essentially described by

\[
\langle v, w \rangle_{\mathcal{B}^k} = \langle v, \overline{w} \rangle_{\mathcal{B}^k \times \mathcal{B}^{-k}} \quad \text{ (for } v, w \in \mathcal{B}^k \)
\]

[2.0.2] Note: Since \(D \) injects to \(\mathcal{B}^0 \) and is dense in \(\mathcal{B}^0 \), every \(\mathcal{B}^k \rightarrow \mathcal{B}^{k-1} \) for \(k \geq 1 \) is injective with dense image. The injectivity and dense image of \(\mathcal{B}^{+1} \rightarrow \mathcal{B}^0 \) give injective adjoint \((\mathcal{B}^0)^\ast \rightarrow \mathcal{B}^{-1} \) with dense

[1] For general categorical reasons, \(\mathcal{B}^{+\infty} \) is the dual of \(\mathcal{B}^{-\infty} \), but \((\mathcal{B}^{+\infty})^\ast = \mathcal{B}^{-\infty} \) needs the fact that a continuous linear map from a limit of Banach spaces to a normed space necessarily factors through a limit map.
image. Since S is symmetric and commutes with conjugation, the extensions $S^\# , T^\#$ are compatible with the complex-linear identification $\Lambda : \mathfrak{B}^0 \to (\mathfrak{B}^0)^*$.

[2.1] Large extensions of operators

The extended operators $S^\# , T^\# : \mathfrak{B}^k \to \mathfrak{B}^{k-2}$ for $k \geq 2$ have adjoints $(S^\#)^*$ and $(T^\#)^*$ mapping $\mathfrak{B}^{-(k-2)} \to \mathfrak{B}^{-k}$.

For even indices k, compatibility with conjugation and the complex-linear isomorphism $\Lambda : \mathfrak{B}^0 \approx (\mathfrak{B}^0)^*$ allows us to consider these adjoints as extensions of $S^\# , T^\#$, and denote them simply by the same symbols, $S^\#$ and $T^\#$.

To connect positive and negative odd indices k, the conjugation allows us to extend $S^\# , T^\#$ to maps $\mathfrak{B}^{+1} \to \mathfrak{B}^{-1}$, by

$$(S^\# x)(y) = \langle x, y \rangle_{\mathfrak{B}^1}, \quad (T^\# x)(y) = \langle x, y \rangle_{\mathfrak{B}^1}, \quad (x, y \in \mathfrak{B}^{+1})$$

Again, these extensions are indeed compatible with $\mathfrak{B}^{+1} \to \mathfrak{B}^0 \approx (\mathfrak{B}^0)^* \to \mathfrak{B}^{-1}$.

Thus, S, T extend to $S^\# , T^\# : \mathfrak{B}^k \to \mathfrak{B}^{k-2}$ for all $k \in \mathbb{Z}$, inducing $S^\# , T^\# : \mathfrak{B}^+ \to \mathfrak{B}^+$ and the large extensions $S^\# , T^\# : \mathfrak{B}^- \to \mathfrak{B}^-$, denoted by the same symbols. [2]

Then non-commutative polynomials Q in S, T with real coefficients are likewise compatible with conjugation, so have large extensions $Q^\#$. Writing a non-commutative polynomial’s arguments as x, y, the compatibility of such polynomials with formation of large extensions is

$$Q(S, T)^\# = Q(S^\# , Q^\#)$$

[2] Laplacians on test functions give the archetype for $S^\# : \mathfrak{B}^+ \to \mathfrak{B}^+$, and the extension to distributional differentiation is the archetype for the large extension $S^\# : \mathfrak{B}^- \to \mathfrak{B}^-$.

3