Solutions for Midterm 1

1. \(v(t) = 3 + 2t \) and \(x(t) = x_0 + 3t + t^2 \), so the distance traveled during the first \(t \) seconds is \(x(t) - x_0 = 3t + t^2 \). Setting \(t = 3 \) produces

 Answer: \(3 \cdot 2 + 3^2 = 15 \text{ m} \).

2. Separating the variables produces \(\frac{dy}{y} = 3x^2 \, dx \). Integrating both sides we get \(\ln|y| = x^3 + C \). Exponentiating we get

 Answer: \(y = Ce^{x^3} \).

3. \(P(x) = 3 \). Integrating this function we get \(3x \). Hence the integrating factor is \(\rho = e^{3x} \). Multiplying the equation by \(e^{3x} \) produces \(e^{3x}y' + 3e^{3x}y = 2e^{2x} \). The left hand side is \((e^{3x}y)' \). Integrating both sides gives \(e^{3x}y = 2e^{2x} + C \). Setting \(x = 0 \) and \(y = 1 \) we get \(1 = 1 + C \), i.e. \(C = 0 \). Dividing by \(e^{3x} \) we get

 Answer: \(y = e^{-x} \).

4. Separating the variables we get \(\frac{dx}{2x-x^2} = dt \). Using partial fractions we write \(\frac{dx}{2x-x^2} = \frac{1}{2} \left(\frac{1}{x-2} - \frac{1}{x} \right) \, dx \). Integration produces \(\ln|x-2| - \ln|x| = t + C \). Setting \(t = 0 \) and \(x = 1 \) we get \(C = 0 \). Since \(|x| = x \) and \(|x-2| = 2-x \) for the initial value of \(x \) (i.e. for \(x = 1 \)) we set \(\ln|x-2| = \ln(2-x) \) and \(\ln|x| = \ln x \). The equation now becomes \(\ln(2-x) - \ln(x) = t \), i.e. \(\ln \frac{2-x}{x} = t \). Exponentiating we get \(\frac{2-x}{x} = e^t \). Solving for \(x \) produces

 Answer: \(x(t) = \frac{2}{e^t+1} \).

5. We set \(x_0 = 0, y_0 = 1, x_1 = 0.2 \) and \(x_2 = 0.4 \); we need to compute \(y(0.4) = y(x_2) = y_2 \). First we compute \(y_1 = 1 + 0.2(2 \cdot 0 - 1^2) = 0.8 \) and then \(y_2 = 0.8 + 0.2(0.2 - 0.8^2) = 0.712 \).

 Answer: 0.712.

6. The augmented matrix is

 \[
 \begin{pmatrix}
 1 & 3 & 15 & 7 \\
 2 & 7 & 34 & 17
 \end{pmatrix}
 \]

 and the matrix in echelon form is

 \[
 \begin{pmatrix}
 1 & 3 & 15 & 7 \\
 0 & 1 & 4 & 3
 \end{pmatrix}
 \]

 Answer: infinitely many solutions; setting \(x_3 = t \), the parametric description of the solution set is \((-2 - 3t, 3 - 4t, t) \).