1. (7 points) Let \(R \) be the rectangle \(0 \leq x \leq 3, 0 \leq y \leq 1 \). Find the double integral
\[
\int \int_R \frac{xy}{(y^2 + 1)^2} \, dA.
\]

SOLUTION: The iterated integral is \(\int_0^1 \int_0^3 \frac{xy}{(y^2 + 1)^2} \, dx \, dy \). The inside integral is \(\int_0^3 x \, dx = \frac{9}{2} \), so the double integral is
\[
\frac{9}{2} \int_0^1 \frac{y}{(y^2 + 1)^2} \, dy.
\]
Make the substitution \(u = y^2 + 1 \), so \(du = 2y \, dy \) and the answer is
\[
\frac{9}{2} \left(\frac{1}{2} \right)^{1/2} = \frac{9}{8}.
\]

2. (8 points) Let \(R \) be the rectangle \(0 \leq x \leq 5, 0 \leq y \leq 2 \) in the \((x, y)\)-plane. If a continuous function \(f(x, y) \) satisfies
\[-1 \leq f(x, y) \leq xy^2,
\]
what does this tell you about the value of \(\int \int_R f(x, y) \, dA \)?

SOLUTION: Evaluate
\[
\int \int_R xy^2 \, dA = \int_0^2 \int_0^3 xy^2 \, dx \, dy = [x^2/2]_0^3 [y^3/3]_0^2 = \frac{27}{3} = 9.
\]
Also,
\[
\int \int_R (-1) \, dA = -A(R) = -6,
\]
so
\[-6 \leq \int \int_R f(x, y) \, dA \leq 12.
\]

3. (20 points) Suppose \(x = X \) and \(y = Y \) are random variables with joint density function
\[
f(x, y) = \frac{\alpha}{1 + x^2 + y^2} \quad \text{if} \quad x^2 + y^2 \leq 1,
\]
and
\[
f(x, y) = 0 \quad \text{if} \quad x^2 + y^2 > 1.
\]

(a) (10 points) What does the constant \(\alpha \) need to be? (Your answer will involve \(\ln 2 \). Do not evaluate \(\ln 2 \).)

SOLUTION: Compute in polar coordinates, and substitute \(u = 1 + r^2 \):
\[
\int \int f(x, y) \, dA = \int_0^{2\pi} \int_0^1 \frac{\alpha}{1 + r^2} r \, dr \, d\theta = 2\pi \int_0^1 \frac{\alpha}{2} \frac{1}{u} \, du = \alpha \pi \ln 2.
\]
The constant \(\alpha \) is determined by the requirement that \(\int \int f(x, y) \, dA = 1 = 100\% \), so \(\alpha = \frac{1}{\pi \ln 2} \).
(b) (10 points) Find the “median” radius \(R \), so that the probability that \(X^2 + Y^2 \leq R^2 \) is 50%. For full credit, your answer should not involve \(\ln 2 \).

SOLUTION: For each radius \(R \), the probability that \(X^2 + Y^2 \leq R^2 \) is

\[
\int_{r \leq R} f(x, y) \, dA = 2\pi \int_{0}^{R} \frac{\alpha}{1 + \alpha^2} r \, dr \, d\theta = \pi \int_{1}^{R^2} \frac{\alpha}{u} \, du = \frac{1}{\pi \ln 2} \pi \ln(1 + R^2).
\]

To make this equal to 50% = \(\frac{1}{2} \), we need \(1 + R^2 = e^{\frac{\ln 2}{2}} \), so

\[R = \sqrt{\sqrt{2} - 1}. \]

4. (15 points) A plate is in the shape of the triangle \(D \): \(0 \leq y \leq 2 - |x| \), with corners \((-2, 0), (0, 2) \) and \((2, 0)\). The plate has mass density at the point \((x, y)\) equal to \(\rho(x, y) = y + |x| \) per unit area.

(a) (5 points) Find the total mass \(m \) of the plate.

SOLUTION: Let \(T \) denote the triangle. The total mass \(m = \iint_T \rho(x, y) \, dA = \int_{-2}^{2} \int_{0}^{2-|x|} y + |x| \, dy \, dx = \int_{-2}^{2} \int_{0}^{2-|x|} (y^2 + |x|y)_{y=0}^{2} \, dx = 2 \int_{0}^{2} (2-2x)^2+(2-2x)|x| \, dx = 2 \int_{0}^{2} [-x^2+2x]^2 \, dx = 2[-x^3 + 2x^2]_0^2 = -\frac{8}{3} + 8 = \frac{16}{3}. \)

(b) (10 points) Find the center of mass \((\bar{x}, \bar{y})\) of the plate.

SOLUTION: \(\bar{x} = \iint_T x\rho(x, y) \, dA = 0 \), because \(\rho(x, y) = \rho(-x, y) \), and \(T \) is symmetric, so the contribution from \(-2 \leq x \leq 0\) equals minus the contribution from \(0 \leq x \leq 3\). And \(m\bar{y} = \iint_T y\rho(x, y) \, dA = \int_{-2}^{2} \int_{0}^{2-|x|} y^2 + |x|y \, dy \, dx = \int_{-2}^{2} \int_{0}^{2} \frac{y^3}{3} + |x|y^2 \frac{2}{5} \, dy \, dx = 2 \frac{y^3}{3} + x \frac{y^2}{2} |y=0 \, dx = 2 \int_{0}^{2} \frac{1}{5}[16 - 12x + x^3] \, dx = \frac{1}{3}(32 - 24 + \frac{8}{7}) = \frac{10}{3} \). So

\[\bar{y} = \frac{\frac{10}{3}}{\frac{16}{3}} = \frac{5}{8}. \]

5. (10 points) Let \(D \) be the circular disk of radius \(R \) and center \((0, 0)\) in the \((x, y)\)-plane. Find

\[
\iint_D e^{x^2+y^2} \, dA.
\]

(*Hint*: polar coordinates.)

SOLUTION: This integral is not possible as an \((x, y)\) iterated integral. But in polars, substituting \(u = r^2 \), \(\iint_D e^{x^2+y^2} \, dA = \int_{0}^{2\pi} \int_{0}^{R} e^{r^2} r \, dr \, d\theta = 2\pi \int_{0}^{R^2} \frac{1}{2} e^u \, du = \pi(e^{R^2} - 1) \).

6. (15 points) Find the maximum and minimum values of

\[f(x, y) = xy - y \]
subject to the side condition
\[g(x, y) = 4x^2 + y^2 = 4. \]

(Hint: Lagrange multipliers.)

SOLUTION: By Lagrange multipliers, a maximum or minimum point \((x, y)\) must satisfy

\[\nabla f = \lambda \nabla g \]

for some scalar \(\lambda\). But this means

\[\nabla f = y\vec{i} + (x - 1)\vec{j} = \lambda(8x\vec{i} + 2y\vec{j}), \]

so \(y = 8\lambda x\) and \(x - 1 = 2\lambda y\). Then \(y^2 = 8\lambda xy = 4x(x - 1)\). Using \(g(x, y) = 4\) gives \(8x^2 - 4x = 4\), so \(x = 1\) or \(x = -\frac{1}{2}\). If \(x = 1\), then \(y = 0\). If \(x = -\frac{1}{2}\), then \(y^2 = 3\). Check \(f(x, y)\) at these three points:

- \(f(1, 0) = 0\); \(f(-\frac{1}{2}, \sqrt{3}) = -\frac{3}{2}\sqrt{3}\) which is the minimum; and \(f(-\frac{1}{2}, -\sqrt{3}) = +\frac{3}{2}\sqrt{3}\) which is the maximum.

7. (25 points) Let \(f(x, y) = 3x^3 - xy^2 + yx^2 + \frac{7}{2}x^2\).
 (a) (5 points) Compute the first and second partial derivatives of \(f(x, y)\).

 SOLUTION:

 \[
 \begin{align*}
 f_x &= 9x^2 - y^2 + 2xy + 7x; \\
 f_y &= -2xy + x^2; \\
 f_{xx} &= 18x + 2y + 7; \\
 f_{xy} &= -2y + 2x; \\
 f_{yy} &= -2x.
 \end{align*}
 \]

 (b) (10 points) Find all the critical points of \(f(x, y)\).

 SOLUTION: \(f_y = 0\) requires either \(x = 0\) or \(x = 2y\).

 - If \(x = 0\) then \(f_x = -y^2 = 0\) only for \(y = 0\): \((0, 0)\) is a critical point.
 - If \(x = 2y\), then \(f_x = 36y^2 - y^2 + 4y^2 + 14y = 0\) requires \(y = 0\) or \(y = -\frac{14}{39}\).

 So there are only two critical points: \((x, y) = (0, 0)\) or \((-\frac{28}{39}, -\frac{14}{39})\).

 (c) (10 points) For each critical point, state whether it is a local minimum point, a local maximum point or a saddle point.

 SOLUTION: At \((x, y) = (0, 0)\), the second partial derivatives are \(f_{xx} = 7, f_{xy} = 0,\) and \(f_{yy} = 0\). So the origin \((0, 0)\) is a degenerate critical point.

 At \((x, y) = (-\frac{28}{39}, -\frac{14}{39})\), the second partial derivatives are \(f_{xx} = 7, f_{xy} = 0,\) and \(f_{yy} = 0\).