A discrete initial value problem

Solve the following second order linear homogeneous difference equation, taking care to satisfy the indicated initial conditions:

\[y_{n+2} + 7y_{n+1} + 12y_n = -40, \quad y_0 = 2, \quad y_1 = 1. \]

Solution. The guess \(y^{(p)}_n = A \) (no “trouble”) for a “particular solution” satisfies the given difference equation if we take \(A = -2 \). The equation

\[r^2 + 7r + 12 = (r + 3)(r + 4) = 0 \]

has roots \(r = -3, -4 \). Therefore the “complementary solution” is

\[y^{(c)}_n = C_1(-3)^n + C_2(-4)^n \]

and the “general solution” takes the form

\[y_n = -2 + C_1(-3)^n + C_2(-4)^n. \]

We have

\[y_0 = C_1 + C_2 - 2 = 2, \quad y_1 = -3C_1 - 4C_2 - 2 = 1, \]

and hence

\[
\begin{bmatrix}
C_1 \\
C_2
\end{bmatrix}
= \begin{bmatrix}
1 & 1 \\
-3 & -4
\end{bmatrix}^{-1}
\begin{bmatrix}
4 \\
3
\end{bmatrix}
= \begin{bmatrix}
19 \\
-15
\end{bmatrix}.
\]

The final answer is the closed form formula

\[y_n = -2 + 19(-3)^n - 15(-4)^n. \]

Brine tank

A very large tank contains 50 lbs of salt dissolved in 400 gallons of water. Brine that contains \(4/5 \) lbs of salt per gallon of water starts entering the tank at time \(t = 0 \) at the rate of 5 gal/min. The mixture leaves the tank at the lower rate of 3 gal/min. Find an expression for the amount of salt in the tank at time \(t \).
Answer.

\[y' = \frac{4 \text{ lbs}}{5 \text{ gal}} \times 5 \frac{\text{gal}}{\text{min}} - \frac{y}{400 + (5 - 3)t} \cdot \frac{\text{lbs}}{\text{gal}} \times 3 \frac{\text{gal}}{\text{min}}, \quad y(0) = 50. \]

\[y' + \frac{3}{2} \frac{y}{t + 200} = 4, \quad y(0) = 50. \]

The integrating factor is \(\exp\left(\frac{3}{2} \int \frac{dt}{t + 200}\right) = (t + 200)^{3/2} \).

\[\frac{d}{dt}(t + 200)^{3/2}y = 4(t + 200)^{3/2} \Rightarrow (t + 200)^{3/2}y = \frac{8}{5}(t + 200)^{5/2} + C \]

\[200^{3/2} \cdot 50 = \frac{8}{5} \cdot 200^{5/2} + C \Rightarrow C = 200^{3/2} \cdot 50 - \frac{8}{5} \cdot 200^{5/2}. \]

Final answer: \(y = \frac{8}{5}(t + 200) + C/(t + 200)^{3/2} \) (with \(C \) as immediately above).

Newton’s Law of Heating and Cooling. A steel ball is heated to a temperature of 200°C and at time \(t = 0 \) is placed in water maintained at 20°C. At \(t = 5 \) minutes the temperature of the ball is 110°C. (i) Find the temperature \(y \) of the ball at time \(t \). Start from the differential equation. (ii) Also find the time at which the temperature of the steel ball equals 50°C, reporting your answer to 4 decimal places of accuracy.

Answer. (i) The differential equation is \(dy/dt = k(20 - y) \). Just to be different let us find the general solution using integrating factors. We have

\[y' + ky = 20k \Rightarrow \frac{d}{dt}e^{kt}y = 20ke^{kt} \Rightarrow e^{kt}y = 20e^{kt} + C \Rightarrow y = 20 + Ce^{-kt}. \]

Using the information \(y(0) = 200 \) we get the equation \(200 = 20 + C \) implying \(C = 180 \). Using the information \(y(5) = 110 \) we get \(110 = 20 + 180e^{-5k} \) implying \(\frac{90}{180} = \frac{1}{2} = e^{-5k} \) and hence

\[y(t) = 20 + 180 \left(\frac{1}{2}\right)^{t/5}. \]

If you solve all the way for \(k \) then the answer takes instead the equivalent form

\[y = 20 + 180e^{-0.138629t}. \]

Either form of the answer is okay. You do not have to give both. (ii) The solution of the equation \(y(t) = 50 \) is \(t = \frac{5 \ln 6}{\ln 2} = 12.9248. \)
Convolution

Find the convolution of \(e^t \) and

\[
f(t) = \begin{cases}
0 & \text{for } 0 \leq t < 1, \\
1 & \text{for } 1 \leq t < 2, \\
0 & \text{for } t \geq 2
\end{cases}
\]

Solution.

\[
\mathcal{L}\{e^t\} = \frac{1}{s-1}, \quad f(t) = u(t-1) - u(t-2), \quad \mathcal{L}\{f(t)\} = \frac{e^{-s} - e^{-2s}}{s},
\]

\[
\mathcal{L}\{e^t \ast f(t)\} = \mathcal{L}\{e^t\}\mathcal{L}\{f(t)\} = \frac{e^{-s} - e^{-2s}}{s(s-1)},
\]

\[
\mathcal{L}^{-1}\left\{\frac{1}{s(s-1)}\right\} = \mathcal{L}^{-1}\left\{\frac{1}{s-1} - \frac{1}{s}\right\} = e^t - 1
\]

Another way to find the inverse Laplace transform on the line above is this:

\[
\mathcal{L}^{-1}\left\{\frac{1}{s(s-1)}\right\} = \int_0^t e^\tau d\tau = e^t - 1.
\]

Final answer:

\[
e^t \ast f(t) = u(t-1)(e^{t-1} - 1) - u(t-2)(e^{t-2} - 1)
\]