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Objective of the talk

Our aim is to explain a couple of recent asymptotic freeness results
the proofs of which both turn on combinatorial ideas related to the
Marcinkiewicz-Zygmund inequality.

We also discuss the general framework of asymptotic liberation and
indicate the role there of the quadratic M.-Z. inequality.

We take basic notions of free probability for granted.
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Talk outline

(0) Quick preview of main results

(I) Around the Marcinkiewicz-Zygmund inequality

(II) Application: An asymptotic freeness result from EE

(III) Yin’s Lemma

(IV) Quadratic inequalities of M.-Z. type

(V) Application: Fake Haar unitaries

(VI) Remarks on asymptotic liberation
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Part 0

Part 0: Quick preview of main results
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Preview of preview

We provide statements of the two sample results the talk is
focused on.

1. An asymptotic freeness result from EE

2. Fake Haar unitaries
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1. An asymptotic freeness result from EE

A. M. Tulino, G. Caire, S. Shamai, S. Verdú, Capacity of channels
with frequency-selective and time-selective fading. IEEE Trans.
Inform. Theory 56 (2010), no. 3, 1187–1215. MR2723670
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Setup for the result

FN =




...

. . .
exp(2π

√
−1 ij

N )√
N

. . .
...




(N-by-N discrete Fourier transform matrix)
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Setup for result (continued)

X ,Y : bounded real random variables

XN =




XN(1, 1)
. . .

XN(N,N)


 , (i.i.d. diagonal, XN(i , i) ∼ X )

YN =




YN(1, 1)
. . .

YN(N,N)


 , (i.i.d. diagonal, YN(i , i) ∼ Y ).

Furthermore, XN and YN are independent.
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Statement of the result

Theorem (Special case of Lemma 1, p. 1194 of TCSV)

Let X and Y be bounded real random variables. Let XN and YN

be independent N-by-N diagonal random matrices with i.i.d. copies
of X and Y , respectively, down the diagonal. Let FN be the
discrete Fourier transform matrix with entries FN(i , j) = ζ ijN/

√
N

(ζN = exp(2π
√
−1/N)). Then XN and FNYNF

∗
N are asymptotically

free as N → ∞.

Thus, strikingly, the discrete Fourier transform matrix, in a
specialized setting, can do the work of a Haar-distributed unitary.
The theorem stated here is only a small part of the work on
signal-processing carried out in TCSV.
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Remark on proof

The idea of the proof of this result is closely linked with the
Marcinkiewicz-Zygmund inequality. We will review the latter,
related combinatorics, and then use those ideas to sketch a proof
of the theorem stated above.

The proof turns out not to be very delicate. One only need assume
that FN is a random unitary independent of XN and YN such that√
N supN maxNi ,j=1 ‖FN(i , j)‖p < ∞. Furthermore, less than

independence need be assumed of the entries of XN and YN .
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2. Fake Haar unitaries

Anderson, G., Farrell, B., Asymptotically liberating sequences of
random unitary matrices, Advances in Math. 255(2014), 381–413.
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Setup for the result

HN = N-by-N complex Hadamard matrix,

i.e.,

|HN(i , j)| = 1 for i , j = 1, . . . ,N.

HN/
√
N is unitary.

E.g., HN = FN but there are many more examples.
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Setup for the result (continued)

WN : an N-by-N uniformly distributed

random signed permutation matrix

In other words, WN factors as a uniformly distributed N-by-N
permutation matrix times an independent N-by-N diagonal matrix
with i.i.d. diagonal entries, each uniform in {±1}.
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Setup for the result (continued)

UN =
WNHNW

∗
N√

N
,

(a random N-by-N unitary)

The only randomness here is coming from WN , which has a
discrete distribution.
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Setup for the result (continued)

XN ,YN : N-by-N hermitian matrices

Assume that XN and YN have L2 operator norms bounded
uniformly in N.

Assume that the E.S.D.’s of XN and YN converge weakly to limits.
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Statement of the result

Theorem (A.-Farrell, Corollary 3.5)

Let XN and YN be N-by-N hermitian matrices with eigenvalues
bounded uniformly in N. Assume that the empirical distributions of
eigenvalues of XN and YN converge weakly. Let HN be an N-by-N
complex Hadamard matrix. Let WN be a uniformly distributed

N-by-N signed permutation matrix. Let UN =
WNHNW

∗

N√
N

. Then the

pair (XN ,UNYNU
∗
N) is asymptotically free as N → ∞.

In this situation, with VN a Haar-distributed random N-by-N
unitary, Voiculescu’s classical result is that XN and VNYNV

∗
N are

asymptotically free. Thus UN is a “fake” Haar unitary.
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Remark on proof

The preceding result is closely linked with a quadratic variant of
the Marcinkiewicz-Zygmund inequality. The main point of the
combinatorics is Yin’s Lemma.

As remarked above in connection with the TCSV result, the proof
is not too delicate, and it is similarly possible to relax assumptions
on UN considerably.
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Remark on generalizations

In the classical setup of Voiculescu, one can “asymptotically
liberate” several hermitian matrices

X
(1)
N ,X

(2)
N ,X

(3)
N . . . ,X

(n)
N

with eigenvalues bounded uniformly and each with weakly
converging E.S.D. by using independent Haar-distributed N-by-N
random unitaries

V
(1)
N = IN ,V

(2)
N ,V

(3)
N , . . . ,V

(n)
N ,

i.e.,the family

{V (i)
N X

(i)
N V

(i)∗
N }ni=1

is asymptotically free.
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Remark on generalizations (concluded)

Similarly, in the A.-Farrell setup (see Cor. 3.2) it is shown, for
example, that with

HN : an N-by-N deterministic complex Hadamard matrix,

WN : a uniformly distributed N-by-N signed permutation
matrix, and

D
(3)
N , . . . ,D

(n)
N : independent diagonal matrices independent of

WN with i.i.d. {±1}-Bernoulli diagonal entries,
the family

IN ,
HN√
N
WN ,D

(3)
N

HN√
N
WN , . . . ,D

(n) HN√
N
WN

is “asymptotically liberating.”

The general framework of AF provides many more examples like
this but also is far from exhausting the possibilities.
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Part I

Part I: Around the
Marcinkiewicz-Zygmund inequality
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The Khinchin inequality

Notation: ‖Z‖p = (E|Z |p)1/p for p ∈ [1,∞), ‖Z‖∞ = ess. sup|Z |.

ǫ1, . . . , ǫN ∈ {±1} (i.i.d. uniform signs)

a1, . . . , aN (real or complex constants)

Theorem (Khinchin inequality (1923))

Assumptions and notation are as above. For p ∈ [1,∞) one has

(
N∑

i=1

|ai |2
)1/2

Ap ≤
∥∥∥∥∥∥

N∑

i=1

aiǫi

∥∥∥∥∥∥
p

≤ Bp

(
N∑

i=1

|ai |2
)1/2

where the constants Ap and Bp depend only on p.

Littlewood may also be implicated here. Szarek and Haagerup
found best constants in the real case.
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The Marcinkiewicz-Zygmund inequality

The following is a far-reaching generalization of the relation

Var(X1 + · · · + XN) =
N∑

i=1

Var(Xi )

satisfied by independent square-integrable random variables.

Theorem (Marcinkiewicz-Zygmund inequality (1937) )

Fix p ∈ [1,∞). For independent C-valued random variables
X1, . . . ,XN , each with finite Lp-norm and of mean zero, one has

Ap

∥∥∥∥∥∥∥

(
N∑

i=1

|Xi |2
)1/2

∥∥∥∥∥∥∥
p

≤
∥∥∥∥∥∥

N∑

i=1

Xi

∥∥∥∥∥∥
p

≤ Bp

∥∥∥∥∥∥∥

(
N∑

i=1

|Xi |2
)1/2

∥∥∥∥∥∥∥
p

for positive constants Ap and Bp depending only on p.

22 / 75



Remark

A typical strategy for proving M.-Z. is to derive it from the
Khinchin inequality, by reducing to the case of symmetrically
distributed random variables and conditioning on absolute value,
e.g., see the probability text by Chow and Teicher (MR1476912).
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M.-Z. simplified upper bound

Actually, we will not need the M.-Z. inequality at full strength.

Corollary (M.-Z. simplified upper bound)

Fix p ∈ [2,∞). For independent C-valued random variables
X1, . . . ,XN , each with finite Lp-norm and of mean zero, one has

∥∥∥∥∥∥

N∑

i=1

Xi

∥∥∥∥∥∥
p

≤ Bp

(
N∑

i=1

‖Xi‖2p
)1/2

with Bp as in the theorem.

Proof, modulo the theorem + Minkowski

∥∥∥∥∥∥∥

(
N∑

i=1

|Xi |2
)1/2

∥∥∥∥∥∥∥

2

p

=

∥∥∥∥∥∥

N∑

i=1

|Xi |2
∥∥∥∥∥∥
p/2

≤
N∑

i=1

∥∥∥|Xi |2
∥∥∥
p/2

=
N∑

i=1

‖Xi‖2p.
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Combinatorial proof of M.-Z. simplified upper bound

We are more interested in the folkloric combinatorial proof one can
give of the corollary for p = 2k than the corollary itself.

This proof and its setup are what we are going to generalize in
various ways and relate to asymptotic freeness.
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Set partitions (interlude)

Partn = family of partitions of the set 〈n〉.
For example, {{1, 2}, {3, 4, 7}, {6}, {5, 8, 9, 10}} ∈ Part10.

Part
χ
n = {P ∈ Partn | P ∩ {{1}, . . . , {n}} = ∅}.

(χ is meant to be an allusion to Khinchin.) (“no singletons”)

For example, {{1, 2}, {3, 4, 5}, {6, 7}} ∈ Part
χ
7 .

For a nonexample, {{1, 2}, {3}, {4, 5, 6, 7}} ∈ Part7 \ Partχ7 .
Part

χχ
2k = {P ∈ Part

χ
2k | P ∩ {{1, 2}, . . . , {2k − 1, 2k}} = ∅}.

(“no singletons nor any special doubletons of form {2α− 1, 2α}”)
(not needed now—preview of quadratic case)
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Combinatorial proof of MZ

For simplicity we assume that X1, . . . ,XN are real.

Notation: 〈n〉 = {1, . . . , n}.
First steps:

‖X1 + · · · + XN‖2k2k = E(X1 + · · · + XN)
2k =

∑

i:〈2k〉→〈N〉
E

2k∏

α=1

Xi(α)

=
∑

i:〈2k〉→〈N〉
s.t. i takes no value

exactly once

E

2k∏

α=1

Xi(α) ≤
∑

i:〈2k〉→〈N〉
s.t. i takes no value

exactly once

2k∏

α=1

∥∥∥Xi(α)

∥∥∥
2k
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Combinatorial proof of M.-Z. (continued)

‖X1 + · · ·+ XN‖2k2k
carry down

≤
∑

i:〈2k〉→〈N〉
s.t. i takes no value

exactly once

2k∏

α=1

∥∥∥Xi(α)

∥∥∥
2k

use definition of Partχ
2k≤

∑

P∈Partχ
2k

∑

i:〈2k〉→〈N〉 s.t.
i is constant

on blocks of P

2k∏

α=1

∥∥∥Xi(α)

∥∥∥
2k
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Combinatorial proof of M.-Z. (concluded)

Simple facts to keep in mind:Ä∑n
i=1 |zi |2k

ä 1
2k ≤ (∑n

i=1 |zi |2
)1/2

Notation: |S | = cardinality of S

|Partχn | ≤ |{i : 〈n〉 → 〈⌊n2⌋〉}| ≤
(
n
2

)n
.

‖X1 + · · ·+ XN‖2k2k
carry down

≤
∑

P∈Partχ
2k

∑

i:〈2k〉→〈N〉 s.t.
i is constant

on blocks of P

2k∏

α=1

∥∥∥Xi(α)

∥∥∥
2k

=
∑

P∈Partχ
2k

∏

A∈P

N∑

i=1

‖Xi‖|A|2k ≤ k2k
(

N∑

i=1

‖Xi‖22k
)k

.
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Summary

The key idea above boils down to the estimate

∣∣∣∣∣∣∣∣∣∣∣

∑

i:〈n〉→〈N〉
s.t. i takes no value

exactly once

n∏

α=1

z
(α)
i(α)

∣∣∣∣∣∣∣∣∣∣∣

≤
Å
n

2

ãn n∏

α=1

(
N∑

i=1

∣∣∣z (α)i

∣∣∣
2
)1/2

,

which generalizes the Cauchy-Schwarz inequality.

The special case

∣∣∣∣
ß

i:〈n〉→〈N〉
s.t. i takes no value

exactly once

™∣∣∣∣ ≤
Å
n

2

ãn
Nn/2

is especially important in the sequel.
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Part II

Part II:

Application:

an asymptotic freeness result from EE
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An asymptotic freeness result derived with M.-Z. ideas

Recently (in effect) the M.-Z. circle of ideas was used in the
following paper to get an asymptotic freeness result:

A. M. Tulino, G. Caire, S. Shamai, S. Verdú, Capacity of channels
with frequency-selective and time-selective fading. IEEE Trans.
Inform. Theory 56 (2010), no. 3, 1187–1215. MR2723670

Theorem (Special case of Lemma 1, p. 1194 of TCSV)

Let X and Y be bounded real random variables. Let XN and YN

be independent N-by-N diagonal random matrices with i.i.d. copies
of X and Y , respectively, down the diagonal. Let FN be the
discrete Fourier transform matrix with entries FN(i , j) = ζ ijN/

√
N

(ζN = exp(2π
√
−1/N)). Then XN and FNYNF

∗
N are asymptotically

free as N → ∞.
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Sketch of proof of TCSV

Let
Z = (Z (1), . . . ,Z (2k))

be a real random vector with bounded entries all of mean zero, e.g.,

Z (1) = Xm1 − EXm1 , Z (2) = Ym2 − EYm2 , . . .

and let
C = max

i

∥∥∥Z (i)
∥∥∥
∞
.
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Sketch of proof of TCSV (continued)

Let
Z

(1)
N , . . . ,Z

(2k)
N

be N-by-N diagonal random matrices with expected traces equal
to zero such that the random vectors

(Z
(1)
N (i , i), . . . ,Z

(2k)
N (i , i)) for i = 1, . . . ,N

are independent copies of Z , e.g.,

Xm1
N − (EXm1)IN ,Y

m2
N − (EYm1)IN , . . .
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Sketch of proof of TCSV (continued)

Notation: trX =
∑

X (i , i) (un-normalized trace)

After making the standard reductions (familiar to this crowd) it
will be more than enough to prove that

∣∣∣EtrZ (1)
N FNZ

(2)
N F ∗

N · · · Z (2k−1)
N FNZ

(2k)
N F ∗

N

∣∣∣ ≤ (kC )2k .

This one can prove by counting and bounding the nonzero terms.
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Sketch of proof of TCSV (continued)

Let us open the brackets to get a big sum:

∑

i:〈2k〉→〈N〉

EZ
(1)
N (i(1), i(1)) · · · Z (2k)

N (i(2k), i(2k))

×FN(i(1), i(2))F
∗
N (i(2), i(3)) · · · FN(i(2k − 1), i(2k))F ∗

N (i(2k), i(1))

Here we have N2k terms each of which is bounded in absolute
value by C 2k/Nk . This gives a very bad upper bound C 2kNk .
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Sketch of proof (concluded)

But many terms in the big sum are obliged to vanish.

More precisely, if i : 〈2k〉 → 〈N〉 is a function which takes some
particular value exactly once, then

E

2k∏

α=1

Z
(α)
N (i(α), i(α)) = 0

because the diagonal entries of the Z
(α)
N are of mean zero, and

independent if they fall in different rows.

Thus there are at most

|{i : 〈2k〉 → 〈N〉 | i takes no values exactly once}| ≤ k2kNk

nonzero terms in the big sum each bounded in absolute value by
C 2k/Nk , whence the result.
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Remarks

(i) The proof from TCSV which we paraphrased above is not at all
delicate. One could replace the sequence {FN}∞N=1 by any
sequence {UN}∞N=1 of deterministic unitaries for which
maxNi ,j=1 |UN(i , j)| does not grow too fast as a function of N. In

particular, FN could be replaced by HN/
√
N where HN is any

N-by-N complex Hadamard matrix.

(ii) In TCSV one assumes that XN and YN are independent but in
the proof sketched above, less need be assumed, namely, it is
enough merely that the random vectors (XN(i , i),YN(i , i)) for
i = 1, . . . ,N be independent copies of (X ,Y ). It is not necessary
to assume that X and Y are independent.

(iii) In one important respect TCSV is more general: the
assumption of independence along the diagonal is weakened to
stationarity of diagonal entries for one of XN or YN . This is a very
natural type of generalization which we do not consider in this talk.
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Part III

Part III:
Yin’s Lemma
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Partitions (reminder)

Partn = family of partitions of the set 〈n〉.
For example, {{1, 2}, {3, 4, 7}, {6}, {5, 8, 9, 10}} ∈ Part10.

Part
χ
n = {P ∈ Partn | P ∩ {{1}, . . . , {n}} = ∅}.

(χ is meant to be an allusion to Khinchin.) (“no singletons”)

Part
χχ
2k = {P ∈ Part

χ
2k | P ∩ {{1, 2}, . . . , {2k − 1, 2k}} = ∅}.

(“no singletons nor any special doubletons of form {2α− 1, 2α}”)
For example, {{2, 3}, {4, 5}, {6, 7}, {1, 8}} ∈ Part

χχ
8 .

For nonexample, {{1, 2}, {4, 5}, {6, 7}, {3, 8}} ∈ Part
χ
8 \ Partχχ8 .
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Yin’s Lemma (statement)

Reminder: [[A]]2 =
√
trAA∗.

Lemma (Yin’s Lemma)

Let A(1), . . . ,A(k) be N-by-N matrices. For P ∈ Part
χχ
2k one has

∣∣∣∣∣∣∣∣

∑

i : 〈2k〉 → 〈N〉 s.t. i is
constant on blocks of P

k∏

α=1

A(α)(i(2α − 1), i(2α))

∣∣∣∣∣∣∣∣
≤

k∏

α=1

îî
A(α)
óó
2
.

The preceding is a specialization (using quite different notation) of
Lemma 3.4 from

Yin, Y. Q. Limiting spectral distribution for a class of random
matrices. J. Multivariate Anal. 20(1986), 50–68. MR0862241

Yin’s paper gets a lot of citations for its main result concerning
XNTNX

∗
N with minimal moment assumptions (not for Lemma 3.4).
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Example

For example, for

k = 5 and P = {{1, 3, 5}, {2, 7}, {4, 8, 9}, {6, 10}} ∈ Part
χχ
10 ,

the lemma says that

∣∣∣∣∣∣

N∑

i ,j ,ℓ,m=1

A(1)(i , j)A(2)(i , ℓ)A(3)(i ,m)A(4)(j , ℓ)A(5)(ℓ,m)

∣∣∣∣∣∣

≤
îî
A(1)
óó
2

îî
A(2)
óó
2

îî
A(3)
óó
2

îî
A(4)
óó
2

îî
A(5)
óó
2
.
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Enhanced Yin’s Lemma

For application to study of asymptotic liberation we will need a
cheap enhancement.

Lemma (Enhanced Yin’s Lemma)

Let A(1), . . . ,A(k) be N-by-N matrices with vanishing traces. For
P ∈ Part

χ
2k one has

∣∣∣∣∣∣∣∣

∑

i : 〈2k〉 → 〈N〉 s.t. i is
constant on blocks of P

k∏

α=1

A(α)(i(2α − 1), i(2α))

∣∣∣∣∣∣∣∣
≤

k∏

α=1

îî
A(α)
óó
2
.

Proof This is a very cheap enhancement indeed. In the cases
P ∈ Part

χ
2k \ Part

χχ
2k not already covered by Yin’s Lemma as

originally stated, the left side simply vanishes!
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Yin’s Lemma (generalization permitting inductive proof)

The following is a mild generalization of Yin’s Lemma 3.4.

Lemma (Generalized Yin’s Lemma )

Let S be a finite set equipped with two partitions P and Q.
Assume that every block of P meets at least two blocks of Q. For
each B ∈ Q let fB : 〈N〉B → C be a function. Then one has

∣∣∣∣∣∣∣∣∣∣∣

∑

functions i:S→〈N〉
s.t. i is constant on
each block A ∈ P

∏

B∈Q
fB(i|B)

∣∣∣∣∣∣∣∣∣∣∣

2

≤
∏

B∈Q

∑

functions j:B→〈N〉
s.t. j is constant on A ∩ B

for each block A ∈ P

|fB(j)|2.

To recover Yin’s Lemma in the form stated above, take
P ∈ Part

χχ
2k , Q = {{1, 2}, {3, 4}, . . . , {2k − 1, 2k}} and

A(α)(i(2α − 1), i(2α)) = f{2α−1,2α}(i|{2α−1,2α}).
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Generic example

S = {1, 2, 3, 4, 5, 6, 7, 8, 9} = 〈9〉,

P = {A1,A2,A3,A4}, Q = {B1,B2,B3,B4,B5},
where

(A1,A2,A3,A4) = ({1, 2, 7}, {3, 5}, {4, 8}, {6, 9}),
(B1,B2,B3,B4,B5) = ({1}, {2, 3, 4}, {5, 6}, {7, 8}, {9}).

A1 A2 A3 A4

B1 ∗
B2 ∗ ∗ ∗
B3 ∗ ∗
B4 ∗ ∗
B5 ∗

(Verification of hypothesis–each column has at least two ∗’s)
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Generic example (concluded)

(i , i , j , k , j , ℓ, i , k , ℓ)

is the general example of a 9-tuple constant on blocks of P.

(a, b, b, b, c , c , d , d , e)

is the general example of a 9-tuple constant on blocks of Q.
The specialization of Yin’s Lemma in the present case is then

∣∣∣∣∣∣

N∑

i ,j ,k,ℓ=1

a(i)b(i , j , k)c(j , ℓ)d(i , k)e(ℓ)

∣∣∣∣∣∣

2

≤
N∑

i=1

|a(i)|2·
N∑

i ,j ,k=1

|b(i , j , k)|2·
N∑

i ,j=1

|c(i , j)|2·
N∑

i ,j=1

|d(i , j)|2·
N∑

i=1

|e(i)|2.
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Gist of the proof of generalized Yin’s Lemma

The idea of the proof is to proceed by induction on |P|, with the
inductive step accomplished by “summing out an index.” We
illustrate this procedure on the generic example.

Here we will “sum out” i . Let

â() =

(
N∑

i=1

|a(i)|2
)1/2

(a constant),

b̂(j , k) =

(
N∑

i=1

|b(i , j , k)|2
)1/2

,

ĉ(j , ℓ) = |c(j , ℓ)|,

d̂(k) =

(
N∑

i=1

|d(i , k)|2
)1/2

, ê(ℓ) = |e(ℓ)|.
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Gist of proof (continued)

Recall that
Ä∑n

i=1 |zi |2k
ä 1

2k ≤ (∑n
i=1 |zi |2

)1/2
.

We also use the Hölder inequality.

∣∣∣∣∣∣

N∑

i ,j ,k,ℓ=1

a(i)b(i , j , k)c(j , ℓ)d(i , k)e(ℓ)

∣∣∣∣∣∣

2

≤
Ñ

â()
N∑

j ,k,ℓ=1

b̂(j , k)ĉ(j , ℓ)d̂(k)ê(ℓ)

é2

≤ â()2 ·
N∑

i ,j=1

b̂(i , j)2 ·
N∑

i ,j=1

ĉ(i , j)2 ·
N∑

i=1

d̂(i)2 ·
N∑

i=1

ê(i)2

=
N∑

i=1

|a(i)|2·
N∑

i ,j ,k=1

|b(i , j , k)|2·
N∑

i ,j=1

|c(i , j)|2·
N∑

i ,j=1

|d(i , j)|2·
N∑

i=1

|e(i)|2.
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Gist of proof (concluded)

To finish off this explanation, let us make explicit which case of
Yin’s Lemma we are using to achieve the induction.

Ñ

â()
N∑

j ,k,ℓ=1

b̂(j , k)ĉ(j , ℓ)d̂(k)ê(ℓ)

é2

≤ â()2 ·
N∑

i ,j=1

b̂(i , j)2 ·
N∑

i ,j=1

ĉ(i , j)2 ·
N∑

i=1

d̂(i)2 ·
N∑

i=1

ê(i)2

The diagram
j k j ℓ k ℓ
b b c c d e
1 2 3 4 5 6

shows we are using the instance

“P = {{1, 3}, {2, 5}, {4, 6}}, “Q = {{1, 2}, {3, 4}, {5}, {6}}

of generalized Yin’s Lemma, where clearly |“P| < |P|.
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Part IV

Part IV:
The quadratic M.-Z. inequality
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The quadratic M.-Z. inequality

There are many results of quadratic M.-Z. type, some quite
sophisticated. They are in common use in RMT.

For example, the Hanson-Wright inequality has lately been much
“in the news” in connection with universality.
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Hanson-Wright inequality

Notation: For a matrix A with singular values µi , let

[[A]]2 =
(∑

µ2
i

)1/2
(Hilbert-Schmidt norm) and

[[A]]∞ = [[A]] = maxµi (operator norm). Also: ∧ = min

Theorem (Hanson-Wright inequality)

Fix a finite positive constant K. Let X = (X1, . . . ,Xn) ∈ R
n be a

random vector with independent components Xi which satisfy

supp≥1
‖Xi‖p√

p
≤ K and EXi = 0. Let A 6= 0 be an n-by-n matrix

with real entries. Then, for every t ≥ 0,

Pr
Ä
|XTAX − EXTAX | > t

ä
≤ 2 exp

Ç
−c

Ç
t2

K 4[[A]]22
∧ t

K 2[[A]]

åå

for an absolute constant c.

See arXiv:1306.2872 by Rudelson-Vershynin for a proof using
the standard modern toolkit of large deviations, and background.

52 / 75



Whittle’s result

In this talk we have less sophisticated interests. We just need the
quadratic analogue of the M.-Z. simplified upper bound. The
following paper supplies such a result. I do not know if it is the
oldest such paper.

Whittle, P., Bounds for the moments of linear and quadratic forms
in independent variables. (Russian summary) Teor. Verojatnost. i
Primenen. 5(1960) 331–335. transl. Theory Probab. Appl. 5(1960)
303–305. MR0133849
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Whittle’s result

Notation: Let Θ(s) = 2s/2√
π
Γ
Ä
s+1
2

ä
for s ≥ 0.

Theorem (Whittle (1960))

Fix p ∈ [2,∞). Let X1, . . . ,Xn be independent real random
variables in L2p and of mean zero. Let A ∈ Matn be a matrix with
real entries. Then we have

∥∥∥∥∥∥

N∑

i ,j=1

A(i , j)(XiXj − EXiXj)

∥∥∥∥∥∥
p

≤ 23Θ(p)
1
pΘ(2p)

1
2p

Ñ
N∑

i ,j=1

A(i , j)2‖Xi‖22p‖Xj‖22p

é1/2

.

Since sups≥2
Θ(s)

1
s√

s
≤ 1, the Whittle bound simplifies nicely.
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Remarks

(i) Whittle gave a version of the M.-Z. simplified upper bound with
explicit constant of a similar form:

p ≥ 2 and
X1, . . . ,XN ∈ Lp

of mean zero





⇒
∥∥∥∥∥∥

N∑

i=1

Xi

∥∥∥∥∥∥
p

≤ 2Θ(p)
1
p

(
N∑

i=1

‖Xi‖2p
)1/2

(ii) Whittle derived these results using sharp upper constants for
the Khinchin inequality; the latter are also derived in this very
interesting (short!) paper.
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Combinatorial proof of Whittle’s result for p = 2k

To motivate Yin’s Lemma given above, we sketch a combinatorial
proof of Whittle’s result in the case p = 2k (with a bad constant).

Without loss of generality we may assume that

‖Xi‖4k = 1√
2
for i = 1, . . . ,N,

in which case it is enough to show that

∥∥∥∥∥∥

N∑

i ,j=1

A(i , j)(XiXj − EXiXj)

∥∥∥∥∥∥
2k

≤ c[[A]]2

where c is a constant depending only on k .

For simplicity, i.e., out of laziness, we also assume that X1, . . . ,XN

are i.i.d., which does entail loss of generality. The loss can in
principle be recouped with more “elbow grease.”
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Combinatorial proof of Whittle (continued)

For i : 〈4k〉 → 〈N〉 let

ϕ(i) = E

2k∏

α=1

Ä
Xi(2α−1)Xi(2α) − EXi(2α−1)Xi(2α)

ä
.

Then

|ϕ(i)| ≤ 1, ϕ(i) depends only on π(i) ∈ Part4k ,

and ∥∥∥∥∥∥

N∑

i ,j=1

A(i , j)(XiXj − EXiXj)

∥∥∥∥∥∥

2k

2k

=
∑

i:〈4k〉→〈N〉
ϕ(i)

2k∏

α=1

A(i(2α − 1), i(2α)).
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Combinatorial proof of Whittle (continued)

Suppose that i takes some value exactly once, say

i(4k) 6∈ {i(β) | β ∈ 〈4k − 1〉}.

Then

ϕ(i)

= E

[(
2k−1∏

α=1

Ä
Xi(2α−1)Xi(2α) − EXi(2α−1)Xi(2α)

ä)
Xi(4k−1)Xi(4k)

]

= E

[(
2k−1∏

α=1

Ä
Xi(2α−1)Xi(2α) − EXi(2α−1)Xi(2α)

ä)
Xi(4k−1)

]
EXi(4k)

= 0.

Upshot: ϕ(i) 6= 0 ⇒ π(i) ∈ Part
χ
4k where (recall)

Part
χ
n = {P ∈ Partn | P has no singleton members}.
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Combinatorial proof of Whittle (continued)

Now suppose π(i) ∈ Part4k has a block of the form {2α− 1, 2α}.
By symmetry we might as well assume that

i(4k − 1) = i(4k) 6∈ {i(β) | β ∈ 〈4k − 2〉}.

Then

ϕ(i) = E

[(
2k−1∏

α=1

Ä
Xi(2α−1)Xi(2α) − EXi(2α−1)Xi(2α)

ä)]

× E
Ä
Xi(4k−1)Xi(4k) − EXi(4k−1)Xi(4k)

ä

= 0.

Upshot: ϕ(i) 6= 0 ⇒ π(i) ∈ Part
χχ
4k , where (recall)

Part
χχ
2ℓ = {P ∈ Part

χ
2ℓ | P ∩ {{1, 2}, . . . , {2ℓ − 1, 2ℓ}} = ∅}.

(“No singletons and no special doubletons of form {2α− 1, 2α}.”)
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Combinatorial proof of Whittle

Thus we have

∥∥∥∥∥∥

N∑

i ,j=1

A(i , j)(XiXj − EXiXj)

∥∥∥∥∥∥

2k

2k

≤
∑

P∈Partχχ
4k

∣∣∣∣∣∣∣∣∣

∑

i:〈4k〉→〈N〉
s.t. P=π(i)

2k∏

α=1

A(α)(i(2α − 1), i(2α))

∣∣∣∣∣∣∣∣∣

≤ c max
P∈Partχχ

4k

∣∣∣∣∣∣∣∣∣∣∣

∑

i:〈4k〉→〈N〉
s.t. i is constant
on blocks of P

2k∏

α=1

A(α)(i(2α − 1), i(2α))

∣∣∣∣∣∣∣∣∣∣∣

where c is a constant depending only on k . The last step is
accomplished by Möbius inversion. Done by Yin’s Lemma.
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Remarks

Up to bad constants, for study of asymptotic liberation, Yin’s
Lemma and Whittle’s bound are more or less equivalent.

These quadratic variants of Marcinkiewicz-Zygmund are the
stock-in-trade for people working on large covariance matrices.
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Part V

Part V:

Application: Fake Haar unitaries
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Setup for result on fake Haar unitaries

We now recall a result from

Anderson, G., Farrell, B., Asymptotically liberating sequences of
random unitary matrices, Advances in Mathematics 255(2014),
381–413.

Theorem (A.-Farrell, Corollary 3.5)

Let XN and YN be N-by-N hermitian matrices with operator norms
bounded uniformly in N. Assume that the empirical distributions of
eigenvalues of XN and YN converge weakly. Let HN be an N-by-N
complex Hadamard matrix. Let WN be a uniformly distributed

N-by-N signed permutation matrix. Let UN =
WNHNW

∗

N√
N

. Then the

pair (XN ,UNYNU
∗
N) is asymptotically free.

With UN replaced by a Haar-distributed random unitary, the
preceding statement is a classical result of Voiculescu. In this sense
UN is a “fake” Haar unitary.
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Proof of the A.-F. result

After making reductions of a form familiar to a free probabilist, the
proof boils down to the following issue. (See the paper of A.-F. for
discussion of such reductions.) Let A(1), . . . ,A(2k) be N-by-N
matrices with complex entries such that trA(α) = 0 for
α = 1, . . . , 2k . It is (more than enough) to show that

∣∣∣EtrA(1)UNA
(2)U∗

N · · ·A(2k−1)UNA
(2k)U∗

N

∣∣∣

≤ c
îî
A(1)
óó
· · ·
îî
A(2k)

óó

where the constant c depends only on k (not N). (The focus of
the paper of A.-F. is on this type of estimate and various natural
generalizations.)
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Proof of the A.-F. result (continued)

For i : 〈4k〉 → 〈N〉 let

ϕ(i) = E

ñ
UN(i(1), i(2))U

∗
N (i(3), i(4))

× · · · × UN(i(4k − 3), i(4k − 2))U∗
N(i(4k − 1), i(4k))

ô
.
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Proof of the A.-F. result (continued)

Then

|ϕ(i)| ≤ 1√
N
, ϕ(σ ◦ i) = ϕ(i) for σ ∈ S4k ,

and
EtrA(1)UNA

(2)U∗
N · · ·A(2k−1)UNA

(2k)U∗
N

=
∑

i:〈4k〉→〈N〉
ϕ(i)

2k∏

α=1

A(α)(i(2α − 1), i(2α)).

It follows that ϕ(i) depends only on π(i) ∈ Part4k and furthermore,
because of invariance of the law of UN under conjugation by signed
permutation matrices, in fact ϕ(i) 6= 0 implies that π(i) ∈ Part

χ
4k .
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Proof of the A.-F. result (concluded)

The endgame plays out like that of the combinatorial proof of
Whittle’s result under simplifying i.i.d. hypotheses:

∣∣∣EtrA(1)UNA
(2)U∗

N · · ·A(2k−1)UNA
(2k)U∗

N

∣∣∣

≤ 1

Nk

∑

P∈Partχ
4k

∣∣∣∣∣∣∣∣∣

∑

i:〈4k〉→〈N〉
s.t. P=π(i)

2k∏

α=1

A(α)(i(2α − 1), i(2α))

∣∣∣∣∣∣∣∣∣

Möbius
≤ c

Nk
max

P∈Partχ
4k

∣∣∣∣∣∣∣∣∣∣∣

∑

i:〈4k〉→〈N〉
s.t. i is constant
on blocks of P

2k∏

α=1

A(α)(i(2α − 1), i(2α))

∣∣∣∣∣∣∣∣∣∣∣

Yin
≤ c

Nk

2k∏

α=1

îî
A(α)
óó
2
≤ c

2k∏

α=1

îî
A(α)
óó

where c is a constant depending only on k .
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Remarks

(a) The proof only uses the invariance of the law of UN under
signed permutation matrices and control of the Lp norms of
entries of UN which one naturally has. Same argument thus
applies in the classical Voiculescu setup.

(b) There is nothing particularly special about the group of signed
permutation matrices. It is an open problem to understand
what finite groups of matrices could play a similar role.

(c) It is an interesting problem to devise fake Haar unitaries with
as little randomness as possible. Male’s theory of traffics
arXiv:1111.4662 can possibly be used to get more examples.
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Part VI

Part VI:
Remarks on asymptotic liberation
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Asymptotic liberation

In A.-Farrell Advances in Math. 255(2014) the point is to
introduce and explore some consequences of the following sort of
estimate which in practice can be easier to handle than asymptotic
freeness.
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Definition of asymptotic liberation

Let I be an index set. For each positive integer N and index i ∈ I

suppose one is given a random unitary matrix U
(N)
i ∈ MatN

defined on a probability space depending only on N. We say that
the sequence of families

ß{
U

(N)
i

}
i∈I

™∞

N=1

is asymptotically liberating if for i1, . . . , iℓ ∈ I satisfying

ℓ ≥ 2, i1 6= i2, . . . , iℓ−1 6= iℓ, iℓ 6= i1,

there exists a constant c(i1, . . . , iℓ) such that

∣∣∣E tr

(
U

(N)
i1

A1U
(N)∗
i1

· · ·U(N)
iℓ

AℓU
(N)∗
iℓ

)∣∣∣ ≤ c(i1, . . . , iℓ)[[A1]] · · · [[Aℓ]]

for all positive integers N and constant matrices
A1, . . . ,Aℓ ∈ MatN each of trace zero.
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Remarks

If {U(i)
N }i∈I is a family of independent N-by-N Haar-distributed

unitaries then it is asymptotically liberating.

Perhaps the slightly stronger estimate

∣∣∣E tr

(
U

(N)
i1

A1U
(N)∗
i1

· · ·U(N)
iℓ

AℓU
(N)∗
iℓ

)∣∣∣ ≤ c(i1, . . . , iℓ)
[[A1]]2√

N
· · · [[Aℓ]]2√

N

should be made the definition, since in all cases where we can
make an interesting estimate, this is what we actually prove.

But the other hand, in the general run of applications the definition
as stated is what one actually uses. And the definition itself could
be weakened, say, by permitting a factor of Nǫ where 0 < ǫ < 1.
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Asymptotic freeness from asymptotic liberation

Let {U(i)
N }i∈I be asymptotically liberating. Let {A(i)

N }i∈I be, say, a
family of N-by-N hermitian matrices of which it is assumed that

supi ,N

[[
A
(i)
N

]]
< ∞ and for each i ∈ I the E.S.D. of A

(i)
N tends

weakly as N → ∞ to a limit. Then {U(i)
N A

(i)
N U

(i)∗
N }i∈I is

asymptotically free. In other words, to be asymptotically liberating
is to have the capability of making other matrices free. Nothing is

assumed, however, about the asymptotic freeness of the U
(i)
N

themselves.
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Procedure for generating open problems

Heuristic: Think of any theorem involving Haar-distributed
unitaries where the limits of the ESD’s involved are calculable by
free probability. Replace the Haar-distributed unitaries by less
random unitaries for which the limits of the ESD’s are again
calculable by free probability. Attempt to prove a new theorem.

Sample result about Haar unitaries: The limit of the empirical
distribution of singular values of a block of a Haar-distributed
unitary of fixed aspect ratio can be calculated by using free
probability. Actually these singular values form a determinantal
process for which universality in the bulk and at the edge has been
established.

New problem: For the singular values of a randomly chosen block
of a Hadamard matrix of fixed aspect ratio, one thus reasonably
conjectures a local limit law and more ambitiously universality in
the bulk and at the edge.
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Thank you!

Thank you!
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