Section A.7 and A.10

nth Roots, Rational Exponents, Radical Equations, & Complex Numbers

Math 1051 - Precalculus I
Solve: $3 - 5|2x - 4| < -7$
Solve: $3 - 5|2x - 4| < -7$

Ans: $(-\infty, 1) \cup (3, \infty)$

$3 - 5|2x - 4| < -7$
$-5|2x - 4| < -10$
$|2x - 4| > 2$

So $2x - 4 > 2$ or $2x - 4 < -2$.
Our first exam will be Friday during class time in this room. It will cover the Appendix.

I will do a review on Wednesday.

Be sure to check out the review sheet and exam cover sheet I will post on my web site later today.
Definitions

Square of a number:
Result of multiplying a number by itself
\[3^2 = (3)(3) = 9 \]
Definitions

Square of a number:
Result of multiplying a number by itself
\[3^2 = (3)(3) = 9\]

Square Root of a number:
Number you square to get the given number
\[\sqrt{9} = 3 \text{ since } 3^2 = 9\]
Square of a number:
Result of multiplying a number by itself
\(3^2 = (3)(3) = 9\)

Square Root of a number:
Number you square to get the given number
\(\sqrt{9} = 3\) since \(3^2 = 9\)

\(n^{th}\) Root of a number:
Number raised to the \(n^{th}\) power to get the given number
\(\sqrt[5]{-32} = -2\) since \((-2)^5 = -32\)
Definitions

Square of a number:
Result of multiplying a number by itself
\(3^2 = (3)(3) = 9\)

Square Root of a number:
Number you square to get the given number
\(\sqrt{9} = 3\) since \(3^2 = 9\)

\(n^{\text{th}}\) Root of a number:
Number raised to the \(n^{\text{th}}\) power to get the given number
\(\sqrt[5]{-32} = -2\) since \((-2)^5 = -32\)

In general \(\sqrt[n]{a} = b\) means \(a = b^n\)
Definitions

Square of a number:
Result of multiplying a number by itself
$$3^2 = (3)(3) = 9$$

Square Root of a number:
Number you square to get the given number
$$\sqrt{9} = 3 \text{ since } 3^2 = 9$$

$$n^{th}$$ Root of a number:
Number raised to the $$n^{th}$$ power to get the given number
$$\sqrt[5]{-32} = -2 \text{ since } (-2)^5 = -32$$

In general $$\sqrt[n]{a} = b \text{ means } a = b^n$$

$$n$$ is index, $$a$$ is radicand, $$\sqrt{\text{ }}$$ is radical symbol
If \(n \geq 2, m \geq 2 \) and the radicals are defined, then

\[
\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}
\]

\[
\sqrt[n]{ab} = \sqrt[n]{a^n} \cdot \sqrt[n]{b}
\]

\[
\sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m
\]

\[
\text{if } n \geq 3 \text{ and } n \text{ is odd, }
\]
\[
\text{if } n \geq 2 \text{ and } n \text{ is even, }
\]

In Section A.7 and A.10, you will find detailed discussions on Roots, Exponents, and Complex Numbers.
Properties

If \(n \geq 2, \ m \geq 2 \) and the radicals are defined, then
If $n \geq 2$, $m \geq 2$ and the radicals are defined, then

\[\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b} \]
If \(n \geq 2 \), \(m \geq 2 \) and the radicals are defined, then

\[
\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}
\]

\[
\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}
\]
If $n \geq 2$, $m \geq 2$ and the radicals are defined, then

\[\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b} \]

\[\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}} \]

\[\sqrt[n]{a^m} = (\sqrt[n]{a})^m \]
Properties

If $n \geq 2$, $m \geq 2$ and the radicals are defined, then

\[
\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}
\]

\[
\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}
\]

\[
\sqrt[n]{a^m} = (\sqrt[n]{a})^m
\]

\[
\sqrt[n]{a^n} = a \text{ if } n \geq 3 \text{ and } n \text{ is odd}
\]

\[
= |a| \text{ if } n \geq 2 \text{ and } n \text{ is even}
\]
How to simplify radicals:

- Remove any perfect roots from the radicand
- No fractions under the radicand
- No radicals in the denominator

Examples

Section A.7 and A.10
How to simplify radicals:

- Remove any perfect roots from the radicand
How to simplify radicals:

- Remove any perfect roots from the radicand
- No fractions under the radicand
How to simplify radicals:

- Remove any perfect roots from the radicand
- No fractions under the radicand
- No radicals in the denominator
How to simplify radicals:

- Remove any perfect roots from the radicand
- No fractions under the radicand
- No radicals in the denominator

Examples
Radical Equations

Put the radical on one side and then undo by exponentiating.

Solve \(3 + 2 \cdot \sqrt{x} + 4 = 5\)

Watch out! Incorrect thinking sometimes can lead to a correct solution.
Put the radical on one side and then undo by exponentiating.
Put the radical on one side and then undo by exponentiating.

Solve $3 + 2 \cdot \sqrt{x + 4} = 5$
Radical Equations

Put the radical on one side and then undo by exponentiating.

Solve $3 + 2 \cdot \sqrt{x + 4} = 5$

Watch out! Incorrect thinking sometimes can lead to a correct solution.
Solve $\sqrt{12} - x = x$
Solve $\sqrt{12} - x = x$

Be sure the solution is in the domain of the original equation.
Use the rules of exponents as well as

\[\left(\frac{a}{b} \right)^{m/n} = \frac{n \sqrt[b]{a^m}}{\sqrt[n]{b^m}} \]

Examples: Simplify

\[3\sqrt{x^2} \cdot \sqrt[4]{x^3} \]

\[(4x^{1/3} - y^{1/3})^{2/3} (x^{1/3} - y^{1/3})^{3/2} \]
Rational Exponents

Use the rules of exponents as well as

\[a^{m/n} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m \]
Use the rules of exponents as well as

\[a^{m/n} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m \]

Examples: Simplify

\[
\frac{\sqrt[n]{x^2} \cdot \sqrt{x}}{\sqrt[n]{x^3}}
\]

\[
\frac{\sqrt[n]{x^2} \cdot \sqrt{x}}{\sqrt[n]{x^3}}
\]

\[
= \frac{\sqrt[n]{x^2} \cdot x^{1/n}}{x^{3/n}}
\]

\[
= x^{2/n} \cdot x^{1/n} \cdot x^{-3/n}
\]

\[
= x^{2/n + 1/n - 3/n}
\]

\[
= x^{-1/n}
\]

\[
= \frac{1}{\sqrt[n]{x}}
\]
Use the rules of exponents as well as

\[a^{m/n} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m \]

Examples: Simplify

\[
\frac{\sqrt[3]{x^2} \cdot \sqrt{x}}{\sqrt[4]{x^3}}
\]

\[(4x^{-1}y^{1/3})^{2/3} \]

\[(x^{-1}y)^{3/2} \]
Imagine the solution to the equation $x^2 + 1 = 0$.

In 1572 Italian Rafael Bombelli defined a new number: $i = \sqrt{-1}$. At the time, such numbers were regarded by some as useless. For example, René Descartes called them “imaginary” in 1637 because they appeared to be fictitious.
Imagine the solution to the equation \(x^2 + 1 = 0 \).

In 1572 Italian Rafael Bombelli defined a new number:

\[i = \sqrt{-1} \]
Imagine the solution to the equation $x^2 + 1 = 0$.

In 1572 Italian Rafael Bombelli defined a new number:

$$i = \sqrt{-1}$$

At the time, such numbers were regarded by some as useless. For example, René Descartes called them “imaginary” in 1637 because they appeared to be fictitious.
Imaginary numbers are used in

- signal processing
Uses of Complex Numbers

Imaginary numbers are used in
- signal processing
- control theory
Uses of Complex Numbers

Imaginary numbers are used in
- signal processing
- control theory
- electromagnetism
Uses of Complex Numbers

 Imaginary numbers are used in:
- signal processing
- control theory
- electromagnetism
- fluid dynamics
Uses of Complex Numbers

Imaginary numbers are used in:
- signal processing
- control theory
- electromagnetism
- fluid dynamics
- quantum mechanics
Uses of Complex Numbers

Imaginary numbers are used in
- signal processing
- control theory
- electromagnetism
- fluid dynamics
- quantum mechanics
- cartography
For example the models that describe how AC current flows through wires use imaginary numbers.
For example the models that describe how AC current flows through wires use imaginary numbers.

Here is a model for the propagation of a plane wave along the x-axis as a function of time:
For example the models that describe how AC current flows through wires use imaginary numbers.

Here is a model for the propagation of a plane wave along the x-axis as a function of time:

$$
\psi(x, t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \theta \left(\frac{2\pi}{\lambda} \right) e^{i \left(\frac{2\pi}{\lambda} x - \omega t \right)} d\frac{2\pi}{\lambda}
$$

where

- ψ is the wave function
- λ is the wavelength
- θ is a characteristic of the particular wave
- ω is frequency
- t is time
Powers of i

\[i = \sqrt{-1} \]

and so on...
Powers of i

\[i = \sqrt{-1} \]

\[i^2 = (\sqrt{-1})^2 = -1 \]
Powers of i

department

\[i = \sqrt{-1} \]

\[i^2 = (\sqrt{-1})^2 = -1 \]

\[i^3 = i^2 \cdot i = -1 \cdot i = -i \]
Powers of \(i \)

\[i = \sqrt{-1} \]

\[i^2 = (\sqrt{-1})^2 = -1 \]

\[i^3 = i^2 \cdot i = -1 \cdot i = -i \]

\[i^4 = i^2 \cdot i^2 = -1 \cdot -1 = 1 \]
Powers of i

\[i = \sqrt{-1} \]

\[i^2 = (\sqrt{-1})^2 = -1 \]

\[i^3 = i^2 \cdot i = -1 \cdot i = -i \]

\[i^4 = i^2 \cdot i^2 = -1 \cdot -1 = 1 \]

\[i^5 = i^4 \cdot i = 1 \cdot i = i \]
Powers of i

\[i = \sqrt{-1} \]

\[i^2 = (\sqrt{-1})^2 = -1 \]

\[i^3 = i^2 \cdot i = -1 \cdot i = -i \]

\[i^4 = i^2 \cdot i^2 = -1 \cdot -1 = 1 \]

\[i^5 = i^4 \cdot i = 1 \cdot i = i \]

\[i^6 = i^4 \cdot i^2 = 1 \cdot (-1) = -1 \]
Powers of i

\[i = \sqrt{-1} \]

\[i^2 = (\sqrt{-1})^2 = -1 \]

\[i^3 = i^2 \cdot i = -1 \cdot i = -i \]

\[i^4 = i^2 \cdot i^2 = -1 \cdot -1 = 1 \]

\[i^5 = i^4 \cdot i = 1 \cdot i = i \]

\[i^6 = i^4 \cdot i^2 = 1 \cdot (-1) = -1 \]

and so on...
Complex numbers have the form $a + bi$ where:

- a and b are real numbers
Complex numbers have the form $a + bi$ where:

- a and b are real numbers
- i is the imaginary unit, $\sqrt{-1}$
Complex numbers have the form $a + bi$ where:

- a and b are real numbers
- i is the imaginary unit, $\sqrt{-1}$
- a is the real part of the complex number
Complex numbers have the form $a + bi$ where:

- a and b are real numbers
- i is the imaginary unit, $\sqrt{-1}$
- a is the real part of the complex number
- b is the imaginary part of the complex number
Complex numbers have the form \(a + bi \) where:

- \(a \) and \(b \) are real numbers
- \(i \) is the imaginary unit, \(\sqrt{-1} \)
- \(a \) is the real part of the complex number
- \(b \) is the imaginary part of the complex number
Complex numbers have the form $a + bi$ where:

- a and b are real numbers
- i is the imaginary unit, $\sqrt{-1}$
- a is the real part of the complex number
- b is the imaginary part of the complex number

$$z = a + bi$$

$\bar{z} = a - bi$ is the complex conjugate
Operations with Complex Numbers

Tip: Add like normal and think of the i as a variable like x.

Examples:
Operations with Complex Numbers

Tip: Add like normal and think of the i as a variable like x.

Examples:

$$(2 - 3i)(4 + i)$$
Operations with Complex Numbers

Tip: Add like normal and think of the i as a variable like x.

Examples:

$$(2 - 3i)(4 + i)$$

$$
\begin{array}{c}
4 \\
3i
\end{array}
$$
Operations with Complex Numbers

Tip: Add like normal and think of the i as a variable like x.

Examples:

$$(2 - 3i)(4 + i)$$

$$\frac{4}{3i}$$

$$\frac{5}{4 + 7i}$$
Define the principal square root of a negative number as follows:
Square roots of negative numbers

Define the principal square root of a negative number as follows:

$$\sqrt{-N} = \sqrt{N}i$$
Define the principal square root of a negative number as follows:

$$\sqrt{-N} = \sqrt{N}i$$

Examples:

$$\sqrt{-4}$$

$$\sqrt{-2\sqrt{-18}}$$
Remember, at the first lecture, I proved that $1 = 2$? Let’s prove that false by proving that $1 = -1$ instead...
Start working on the review problems