1.1 and 1.2

Distance, Midpoint, Graphs

Math 1051 - Precalculus I
Solve $2x^2 - 12x - 4 = 0$ by completing the square.

Exams should be returned in discussion Tuesday.
Suppose we know the sum of two numbers is 6...
Suppose we know the sum of two numbers is 6...

There are several ways to represent this relationship:

- Words
Suppose we know the sum of two numbers is 6...

There are several ways to represent this relationship:

- Words
- Equation: \(x + y = 6 \)
Suppose we know the sum of two numbers is 6...

There are several ways to represent this relationship:

- **Words**
- **Equation:** \(x + y = 6 \)
- **Table**
Suppose we know the sum of two numbers is 6...

There are several ways to represent this relationship:

- Words
- Equation: \(x + y = 6\)
- Table
- Picture
Distance Formula

\[d(P_1, P_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \]
Distance Formula

\[\text{distance between } P_1 \text{ and } P_2 = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \]
Find all points on the y-axis that are 5 units from the point $(4, 4)$
Goal: Find the midpoint of two points $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$.
Midpoint Formula

Goal: Find the midpoint of two points $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$.

$$x_{\text{midpoint}} = \frac{x_2 + x_1}{2} \quad y_{\text{midpoint}} = \frac{y_2 + y_1}{2}$$
Goal: Find the midpoint of two points $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$.

\[
x_{\text{midpoint}} = \frac{x_2 + x_1}{2} \quad y_{\text{midpoint}} = \frac{y_2 + y_1}{2}
\]

This looks like the average of the coordinates of the points.
The midpoint of the line segment from P_1 to P_2 is $(5, -4)$. If $P_2 = (7, -2)$, what is P_1?
A hot air balloon, headed due east at an average speed of 15 miles per hour and at a constant altitude of 100 feet, passes over an intersection.

Find an expression for the distance d (feet) from the balloon to the intersection t seconds later.
Graph $y = x^2 + x - 6$ by plotting points
Graph \(y = x^2 + x - 6 \) by plotting points.
x-intercepts are where $y = 0$

y-intercepts are where $x = 0$
Find the x and y intercepts of $x^2 + (y - 2)^2 = 16$
There are three main types of symmetry to look out for in an equation:

- Symmetry about the x-axis
- Symmetry about the y-axis
- Symmetry about the origin
Symmetry about the x-axis

For every point \((x, y)\) on the graph there is another point \((x, -y)\) on the graph.
Symmetry about the x-axis

For every point \((x, y)\) on the graph there is another point \((x, -y)\) on the graph.

\[x = y^2 + 5 \]
Symmetry about the y-axis

For every point \((x, y)\) on the graph there is another point \((-x, y)\) on the graph.
Symmetry about the y-axis

For every point \((x, y)\) on the graph there is another point \((-x, y)\) on the graph.

\[x^2 + (y - 2)^2 = 16\]
Symmetry about the origin

For every point \((x, y)\) on the graph there is another point \((-x, -y)\) on the graph.
Symmetry about the origin

For every point \((x, y)\) on the graph there is another point \((-x, -y)\) on the graph.

\[y = x^3 \]
x-axis: Replace y with $-y$ and simplify. If you get the original equation you have symmetry about the x axis.
How to test for symmetries

- **x-axis**: Replace y with $-y$ and simplify. If you get the original equation you have symmetry about the x axis.
- **y-axis**: Replace x with $-x$ and simplify. If you get the original equation you have symmetry about the y axis.
How to test for symmetries

- **x-axis**: Replace \(y \) with \(-y\) and simplify. If you get the original equation you have symmetry about the \(x \) axis.
- **y-axis**: Replace \(x \) with \(-x\) and simplify. If you get the original equation you have symmetry about the \(y \) axis.
- **origin**: Replace \(x \) with \(-x\) and \(y \) with \(-y\) and simplify. If you get the original equation you have symmetry about the origin.
\[y = \sqrt[5]{x} \]
\[y = \sqrt[5]{x} \]
\[y = x^4 - 1 \]
$y = x^4 - 1$
\[y = \frac{x^2 - 4}{2x} \]
\[x^2 + (y - 2)^2 = 16 \]
Read section 1.3 for Wednesday