Sec 5.3

Exponential Functions

Math 1051 - Precalculus I
Find the inverse of

\[f(x) = \frac{x}{x - 2} \]
Find the inverse of

\[f(x) = \frac{x}{x - 2} \]

Ans:

\[f^{-1}(x) = \frac{2x}{x - 1} \]
So far all the functions we have graphed are algebraic functions.
So far all the functions we have graphed are algebraic functions

- $4x + 3$
So far all the functions we have graphed are **algebraic functions**

- $4x + 3$
- $x^2 + 2x$
So far all the functions we have graphed are algebraic functions

- $4x + 3$
- $x^2 + 2x$
- $\frac{(x+2)(x-1)}{(x+1)^2}$
So far all the functions we have graphed are algebraic functions

- $4x + 3$
- $x^2 + 2x$
- $\frac{(x+2)(x-1)}{(x+1)^2}$
So far all the functions we have graphed are algebraic functions

- $4x + 3$
- $x^2 + 2x$
- $\frac{(x+2)(x-1)}{(x+1)^2}$

All of these involve taking an unknown base x to various powers/exponents like $x^{1/2} = \sqrt{x}$.
So far all the functions we have graphed are algebraic functions

- $4x + 3$
- $x^2 + 2x$
- $\frac{(x+2)(x-1)}{(x+1)^2}$

All of these involve taking an unknown base x to various powers/exponents like $x^{1/2} = \sqrt{x}$.

We can instead fix the base and let the exponent change.
So far all the functions we have graphed are algebraic functions

- $4x + 3$
- $x^2 + 2x$
- $\frac{(x+2)(x-1)}{(x+1)^2}$

All of these involve taking an unknown base x to various powers/exponents like $x^{1/2} = \sqrt{x}$.

We can instead fix the base and let the exponent change. For example, $f(x) = 2^x$
What does the function $f(x) = 2^x$ look like? We can get an idea by plotting points.
What does the function $f(x) = 2^x$ look like? We can get an idea by plotting points.
What does the function $f(x) = 2^x$ look like? We can get an idea by plotting points.

Let’s find some of the properties of this function.
A general exponential function has the form $f(x) = c \cdot a^x$
A general exponential function has the form $f(x) = c \cdot a^x$

- where a is some fixed number
A general exponential function has the form $f(x) = c \cdot a^x$

- where a is some fixed number
- $a > 0$
A general **exponential function** has the form \(f(x) = c \cdot a^x \)

- where \(a \) is some fixed number
- \(a > 0 \)
- \(a \neq 1 \)
A general exponential function has the form \(f(x) = c \cdot a^x \)

- where \(a \) is some fixed number
- \(a > 0 \)
- \(a \neq 1 \)
- \(c \) is some constant that stretches the output by a fixed amount
Exponential functions follow the laws of exponents:
Exponential functions follow the laws of exponents:

- \(a^s \cdot a^t = a^{s+t} \)
Exponential functions follow the laws of exponents:

- $a^s \cdot a^t = a^{s+t}$
- $\frac{a^s}{a^t} = a^{s-t}$
Exponential functions follow the laws of exponents:

- \(a^s \cdot a^t = a^{s+t} \)
- \(\frac{a^s}{a^t} = a^{s-t} \)
- \(\frac{1}{a^s} = a^{-s} \)
Exponential functions follow the laws of exponents:

1. \(a^s \cdot a^t = a^{s+t} \)
2. \(\frac{a^s}{a^t} = a^{s-t} \)
3. \(\frac{1}{a^s} = a^{-s} \)
4. \((a^s)^t = a^{st} \)
Exponential functions follow the laws of exponents:

- $a^s \cdot a^t = a^{s+t}$
- $\frac{a^s}{a^t} = a^{s-t}$
- $\frac{1}{a^s} = a^{-s}$
- $(a^s)^t = a^{st}$
- $(ab)^s = a^s b^s$
Exponential functions follow the laws of exponents:

- \(a^s \cdot a^t = a^{s+t} \)
- \(\frac{a^s}{a^t} = a^{s-t} \)
- \(\frac{1}{a^s} = a^{-s} \)
- \((a^s)^t = a^{st} \)
- \((ab)^s = a^s b^s \)
- \(a^0 = 1 \)
Once we know the graph of $f(x) = 2^x$ we can use it to graph other exponential functions using transformations.
Once we know the graph of $f(x) = 2^x$ we can use it to graph other exponential functions using transformations.

Graph $f(x) = -2^{-(x-4)} + 3$
Once we know the graph of \(f(x) = 2^x \) we can use it to graph other exponential functions using transformations.

Graph \(f(x) = -2^{-(x-4)} + 3 \)
Graphs of different exponential functions

\[f(x) = 2^x \]
Graphs of different exponential functions

\[f(x) = 4^x \]
Graphs of different exponential functions

$f(x) = 10^x$
How about $f(x) = \left(\frac{1}{2}\right)^x$?
How about $f(x) = \left(\frac{1}{2}\right)^x$?

We can start with 2^x and use transformations.
Exponential Functions

Sec 5.3

\[f(x) = 2^x \]
Exponential Functions

Sec 5.3

\[f(x) = \left(\frac{1}{2} \right)^x \]
Exponential Functions

Sec 5.3

\[f(x) = \left(\frac{1}{4} \right)^x \]
Inverse of an exponential function

Exponential Functions
Sec 5.3

\[f(x) = 2^x \]
Inverse of an exponential function

\[f^{-1}(x) \]
These involve terms of the form a^x
Exponential Equations

These involve terms of the form a^x

For example,

$$3^{2x-6} = 81^{x-2}$$
Exponential Equations

These involve terms of the form a^x

For example,

$$3^{2x-6} = 81^{x-2}$$
The equation $3^{2x-6} = 81^{x-2}$ is shown graphically, with a table comparing 3^{2x-6} to 81^{x-2} for various values of x. The values for $x = 2.0$ to $x = 1.0$ are compared, showing the relationship between the two expressions over the interval.
Solve $3^{2x-6} = 81^{x-2}$

The important rule is:

If $a^x = a^u$, then $x = u$
Leonhard Euler (1707-1783)

\[e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \]
Leonhard Euler (1707-1783)

\[e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n \]

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\left(1 + \frac{1}{n}\right)^n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2.25</td>
</tr>
<tr>
<td>5</td>
<td>2.48832</td>
</tr>
<tr>
<td>10</td>
<td>2.59374246</td>
</tr>
<tr>
<td>100</td>
<td>2.704813829</td>
</tr>
<tr>
<td>1,000</td>
<td>2.716923932</td>
</tr>
<tr>
<td>10,000</td>
<td>2.718145927</td>
</tr>
<tr>
<td>1,000,000</td>
<td>2.718280469</td>
</tr>
<tr>
<td>1,000,000,000</td>
<td>2.718282031</td>
</tr>
</tbody>
</table>
Leonhard Euler (1707-1783)

\[e = 2.7182818284590 \ldots \]

Euler's Identity:

\[e^{i\pi} = -1 \]
Leonhard Euler (1707-1783)

Exponential Functions

Sec 5.3

e = 2.7182818284590...
Leonhard Euler (1707-1783)

\[e = 2.7182818284590 \ldots \]

Euler’s Identity:

\[e^{i\pi} = -1 \]
Solve: \((e^4)^x e^{x^2} = e^{12}\)
Solve: \((e^4)^x e^{x^2} = e^{12}\)

If \(e^{-2x} = 2\), what does \(e^{x-1}\) equal?
Read section 5.4 for Friday.