Exam 2 Review

Covers chapters 1 and 2

Math 1051 - Precalculus I
A rectangle is inscribed in an isosceles right triangle whose hypotenuse lies along the x-axis and is 8 units long. Express the area A of the rectangle in terms of x.

Ans: $A(x) = -2x^2 + 8x$
A rectangle is inscribed in an isosceles right triangle whose hypotenuse lies along the x-axis and is 8 units long. Express the area A of the rectangle in terms of x.

Ans: $A(x) = -2x^2 + 8x$
Sec 1.1 Distance and Midpoint Formulas

Distance Formula
\[d(P_1, P_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \]

Midpoint Formula
\[x_{\text{midpoint}} = \frac{x_1 + x_2}{2} \]
\[y_{\text{midpoint}} = \frac{y_1 + y_2}{2} \]

These are the average of the coordinates.

Covers chapters 1 and 2

Exam 2 Review
Sec 1.1 Distance and Midpoint Formulas

Distance Formula

\[d(P_1, P_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \]
Sec 1.1 Distance and Midpoint Formulas

Distance Formula

\[d(P_1, P_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \]

Midpoint Formula

\[x_{\text{midpoint}} = \frac{x_1 + x_2}{2} \]
\[y_{\text{midpoint}} = \frac{y_1 + y_2}{2} \]
Distance Formula

\[d(P_1, P_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \]

Midpoint Formula

\[x_{\text{midpoint}} = \frac{x_1 + x_2}{2} \]
\[y_{\text{midpoint}} = \frac{y_1 + y_2}{2} \]

These are the average of the coordinates.
Sec 1.2 Graphs in Two Variables

Graph equations by plotting points.

- **x-intercept** is the value of x when $y = 0$.
- **y-intercept** is the value of y when $x = 0$.

Covers chapters 1 and 2

Exam 2 Review
Graph equations by plotting points.
Sec 1.2 Graphs in Two Variables

- Graph equations by plotting points.
- x-intercept is the value of x when $y = 0$
Graph equations by plotting points.
- x-intercept is the value of x when $y = 0$
- y-intercept is the value of y when $x = 0$
Sec 1.3 Linear Relations

Slope-intercept form:
\[y = mx + b \]

Point-slope form:
\[y - y_1 = m(x - x_1) \]

General form:
\[Ax + By = C \]

Average rate of change:
\[m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\text{rise}}{\text{run}} \]

Horizontal lines:
\[y = k \]

Vertical lines:
\[x = k \]

Parallel lines: Same slope

Perpendicular lines: Slopes are negative reciprocals
\[m_1 = -\frac{1}{m_2} \]

Covers chapters 1 and 2
Exam 2 Review
Sec 1.3 Linear Relations

- Slope-intercept form: $y = mx + b$

Horizontal lines: $y = k$

Vertical lines: $x = k$

Parallel lines: Same slope

Perpendicular lines: Slopes are negative reciprocals $m_1 = -\frac{1}{m_2}$
Sec 1.3 Linear Relations

- Slope-intercept form: $y = mx + b$
- Point-slope form: $y - y_1 = m(x - x_1)$
Sec 1.3 Linear Relations

- Slope-intercept form: \(y = mx + b \)
- Point-slope form: \(y - y_1 = m(x - x_1) \)
- General form: \(Ax + By = C \)

Covers chapters 1 and 2

Exam 2 Review
Sec 1.3 Linear Relations

- Slope-intercept form: $y = mx + b$
- Point-slope form: $y - y_1 = m(x - x_1)$
- General form: $Ax + By = C$
- Average rate of change: $m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\text{rise}}{\text{run}}$

Horizontal lines: $y = k$
Vertical lines: $x = k$
Parallel lines: Same slope
Perpendicular lines: Slopes are negative reciprocals $m_1 = -\frac{1}{m_2}$
Sec 1.3 Linear Relations

- Slope-intercept form: \(y = mx + b \)
- Point-slope form: \(y - y_1 = m(x - x_1) \)
- General form: \(Ax + By = C \)
- Average rate of change: \(m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\text{rise}}{\text{run}} \)
- Horizontal lines: \(y = k \)
Sec 1.3 Linear Relations

- Slope-intercept form: \(y = mx + b \)
- Point-slope form: \(y - y_1 = m(x - x_1) \)
- General form: \(Ax + By = C \)
- Average rate of change: \(m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\text{rise}}{\text{run}} \)
- Horizontal lines: \(y = k \)
- Vertical lines: \(x = k \)
Sec 1.3 Linear Relations

- Slope-intercept form: \(y = mx + b \)
- Point-slope form: \(y - y_1 = m(x - x_1) \)
- General form: \(Ax + By = C \)
- Average rate of change: \(m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\text{rise}}{\text{run}} \)
- Horizontal lines: \(y = k \)
- Vertical lines: \(x = k \)
- Parallel lines: Same slope
Sec 1.3 Linear Relations

- Slope-intercept form: \(y = mx + b \)
- Point-slope form: \(y - y_1 = m(x - x_1) \)
- General form: \(Ax + By = C \)
- Average rate of change: \(m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\text{rise}}{\text{run}} \)
- Horizontal lines: \(y = k \)
- Vertical lines: \(x = k \)
- Parallel lines: Same slope
- Perpendicular lines: Slopes are negative reciprocals

\[m_1 = -\frac{1}{m_2} \]
Find the equation of a line perpendicular to the line
$3x - y = -4$ and which passes through $(-2, 4)$. Write the
answer in slope-intercept form and general form.
Sec 1.4 Circles

Standard form of a circle equation:

\[(x - h)^2 + (y - k)^2 = r^2\]

General form of a circle equation:

\[x^2 + y^2 + ax + by + c = 0\]

Find the center and radius of the circle described by

\[2x^2 + 2y^2 - 4x + 8y = 0\]
Sec 1.4 Circles

Standard form of a circle equation:

$$(x - h)^2 + (y - k)^2 = r^2$$
Standard form of a circle equation:

\[(x - h)^2 + (y - k)^2 = r^2\]

General form of a circle equation:

\[x^2 + y^2 + ax + by + c = 0\]
Standard form of a circle equation:

$$ (x - h)^2 + (y - k)^2 = r^2 $$

General form of a circle equation:

$$ x^2 + y^2 + ax + by + c = 0 $$

Find the center and radius of the circle described by

$$ 2x^2 + 2y^2 - 4x + 8y = 0 $$
Sec 2.1 Functions

A function can be thought of as a machine...

If \(f(x) = -3x^2 + 1 \), what is \(f(x+h) \)?
A function can be thought of as a machine...

If \(f(x) = -3x^2 + 1 \), what is \(f(x + h) \)?
Domain: Allowable values of x in a function
Sec 2.1 Functions

Domain: Allowable values of x in a function

Find the domain of

$$f(x) = \frac{\sqrt{x + 6}}{|x + 6| - 2}$$
Sec 2.3 Properties of Functions

Even function:
$f(-x) = f(x)$, symmetric about y-axis

Odd function:
$f(-x) = -f(x)$, symmetric about origin

Covers chapters 1 and 2
Exam 2 Review
Sec 2.3 Properties of Functions

Even function: \(f(-x) = f(x) \),

Odd function: \(f(-x) = -f(x) \), symmetric about the origin.
Even function: $f(-x) = f(x)$, symmetric about y-axis
Sec 2.3 Properties of Functions

Even function: $f(-x) = f(x)$, symmetric about y-axis

Odd function: $f(-x) = -f(x)$,
Sec 2.3 Properties of Functions

Even function: \(f(-x) = f(x) \), symmetric about \(y-axis \)

Odd function: \(f(-x) = -f(x) \), symmetric about \(origin \)
Is \(f(x) = \frac{x^2 - 2}{x^3 - 3x} \) even, odd, or neither?
Is \(f(x) = \frac{x^2 - 2}{x^3 - 3x} \) even, odd, or neither?
Average Rate of change from c to x is

$$ARC = \frac{\Delta y}{\Delta x} = \frac{f(x) - f(c)}{x - c}$$
Average Rate of change from \(c \) to \(x \) is

\[
ARC = \frac{\Delta y}{\Delta x} = \frac{f(x) - f(c)}{x - c}
\]

Find the average rate of change of \(f(x) = 3x^2 - 1 \) from 1 to 2 and the secant line that connect \((1, f(1))\) and \((2, f(2))\).
Basic functions

- Square Root: \(f(x) = \sqrt{x} \)
- Cube Root: \(f(x) = \sqrt[3]{x} \)
- Identity: \(f(x) = x \)
- Square: \(f(x) = x^2 \)
- Cube: \(f(x) = x^3 \)
- Constant: \(f(x) = b \)
- Absolute value: \(f(x) = |x| \)
Basic functions

- **Square Root**: \(f(x) = \sqrt{x} \)
- **Cube Root**: \(f(x) = \sqrt[3]{x} \)
- **Identity**: \(f(x) = x \)
- **Square**: \(f(x) = x^2 \)
- **Cube**: \(f(x) = x^3 \)
- **Constant**: \(f(x) = b \)
- **Absolute value**: \(f(x) = |x| \)
Reciprocal:

\[f(x) = \frac{1}{x} \]
- Reciprocal:
 \[f(x) = \frac{1}{x} \]

- Reciprocal Square:
 \[f(x) = \frac{1}{x^2} \]
• Reciprocal:
 \[f(x) = \frac{1}{x} \]

• Reciprocal Square:
 \[f(x) = \frac{1}{x^2} \]

• Greatest Integer:
 \[f(x) = \text{int}(x) = \lfloor x \rfloor \]
Graph

\[f(x) = \begin{cases}
 x^2 + 1 & \text{if } -3 < x < 2 \\
 x + 3 & \text{if } 3 \leq x \leq 5 \\
 -4 & \text{if } x > 5
\end{cases} \]
Piecewise Functions

Graph

\[
f(x) = \begin{cases}
 x^2 + 1 & \text{if } -3 < x < 2 \\
 x + 3 & \text{if } 3 \leq x \leq 5 \\
 -4 & \text{if } x > 5
\end{cases}
\]

Tip: Plot some points within each domain
Piecewise Functions

Graph

\[f(x) = \begin{cases}
 x^2 + 1 & \text{if } -3 < x < 2 \\
 x + 3 & \text{if } 3 \leq x \leq 5 \\
 -4 & \text{if } x > 5
\end{cases} \]

Tip: Plot some points within each domain

Things you may need to know: domain, range, x-intercepts, y-intercept
Graph $f(x) = -3(x - 1)^3 + 2$ using transformations.
Page 97 in the textbook has a nice summary if this is still confusing.
Page 97 in the textbook has a nice summary if this is still confusing.

Graph \(f(x) = -3(x - 1)^3 + 2 \) using transformations.
Page 97 in the textbook has a nice summary if this is still confusing.

Graph \(f(x) = -3(x - 1)^3 + 2 \) using transformations.

RCS
A rectangle is inscribed in a circle of radius 8 centered at the origin. Let $P = (x, y)$ be the point in quadrant 1 that is a vertex of the rectangle and is on the circle. Express the area A of the rectangle as a function of x.
Have a nice weekend!