Review for Final Exam

Chapters 2 and 3

Math 1051 - Precalculus I
Solve:

\[
(x^3 - 9x) |x - 1| = 0
\]

Ans:
\[x = 0, 3, -3, 1\]
Solve:

\[
\left(x^3 - 9x\right) |x - 1| = 0
\]

Ans: \(x = 0, 3, -3, 1\)
Final Exam
Friday, Dec 14
1:30pm - 4:30pm
Final Exam
Friday, Dec 14
1:30pm - 4:30pm

Locations
DIS 21, 23: Mechanical Engineering, Room 18
DIS 22, 27: Mechanical Engineering, Room 108
DIS 24: Mechanical Engineering, Room 212
DIS 26: Mechanical Engineering, Room 102

Exam Format
14 Multiple Choice, 5 "Essay" questions

Be sure to bring your student ID, pencils, and a scientific calculator

Chapters 2 and 3
Review for Final Exam
Final Exam
Friday, Dec 14
1:30pm - 4:30pm

Locations
DIS 21, 23: Mechanical Engineering, Room 18
DIS 22, 27: Mechanical Engineering, Room 108
DIS 24: Mechanical Engineering, Room 212
DIS 26: Mechanical Engineering, Room 102

Exam Format
14 Multiple Choice, 5 “Essay” questions
Final Exam
Friday, Dec 14
1:30pm - 4:30pm

Locations
DIS 21, 23: Mechanical Engineering, Room 18
DIS 22, 27: Mechanical Engineering, Room 108
DIS 24: Mechanical Engineering, Room 212
DIS 26: Mechanical Engineering, Room 102

Exam Format
14 Multiple Choice, 5 “Essay” questions

Be sure to bring your student ID, pencils, and a scientific calculator
2.1 Functions

- Relations versus functions
2.1 Functions

- Relations versus functions
- Value of a function
2.1 Functions

- Relations versus functions
- Value of a function
- Implicit form of a function (e.g. $x = 2y$)
2.1 Functions

- Relations versus functions
- Value of a function
- Implicit form of a function (e.g. $x = 2y$)
- Domain
2.1 Functions

- Relations versus functions
- Value of a function
- Implicit form of a function (e.g. $x = 2y$)
- Domain
- Sums, differences, products, and quotients of functions
2.1 Functions

- Relations versus functions
- Value of a function
- Implicit form of a function (e.g. $x = 2y$)
- Domain
- Sums, differences, products, and quotients of functions

Consider the function $f(x) = \sqrt{3x - 9} - x^2 - 4x - 5 + \log(x - 4)$. To find the domain, we need to ensure that the arguments of the square root, logarithm, and polynomial terms are non-negative and defined. The square root requires $3x - 9 \geq 0$, which simplifies to $x \geq 3$. The logarithm requires $x - 4 > 0$, which simplifies to $x > 4$. The polynomial terms are defined for all real numbers. Therefore, the domain of $f(x)$ is $x > 4$.

Chapters 2 and 3
Review for Final Exam
2.1 Functions

- Relations versus functions
- Value of a function
- Implicit form of a function (e.g. $x = 2y$)
- Domain
- Sums, differences, products, and quotients of functions

Find domain of

$$f(x) = \frac{\sqrt{3x - 9}}{x^2 - 4x - 5} + \log(x - 4)$$
2.2 Graphs

- Identify the graph of a function
2.2 Graphs

- Identify the graph of a function
- Extract information from graphs
2.3 Properties of Functions

- **Even functions** \(f(-x) = f(x) \)

- **Odd functions** \(f(-x) = -f(x) \)

Symmetric about the **y-axis** (like \(f(x) = x^2 \))

Symmetric about the origin (like \(f(x) = x^3 \))

Even, odd, or neither?

\[f(x) = 2x^4 - 3x^2 + 1 \]
2.3 Properties of Functions

- **Even functions** $f(-x) = f(x)$
- Symmetric about *y*-axis (like $f(x) = x^2$)

- **Odd functions** $f(-x) = -f(x)$
- Symmetric about origin (like $f(x) = x^3$)

Even, odd, or neither?

$f(x) = 2x^4 - 3x^2 + 1$
2.3 Properties of Functions

- **Even functions** $f(-x) = f(x)$
- Symmetric about *y*-axis (like $f(x) = x^2$)
- **Odd functions** $f(-x) = -f(x)$
2.3 Properties of Functions

- **Even functions** $f(-x) = f(x)$
- Symmetric about *y-axis* (like $f(x) = x^2$)
- **Odd functions** $f(-x) = -f(x)$
- Symmetric about *origin* (like $f(x) = x^3$)

Even, odd, or neither?

$f(x) = 2x^4 - 3x^2 + 1$
2.3 Properties of Functions

- **Even functions** $f(-x) = f(x)$
- Symmetric about **y-axis** (like $f(x) = x^2$)
- **Odd functions** $f(-x) = -f(x)$
- Symmetric about **origin** (like $f(x) = x^3$)
2.3 Properties of Functions

- **Even functions** $f(-x) = f(x)$
 - Symmetric about y-axis (like $f(x) = x^2$)
- **Odd functions** $f(-x) = -f(x)$
 - Symmetric about origin (like $f(x) = x^3$)

Even, odd, or neither?

$$f(x) = \frac{2x^4 - 3x^2 + 1}{3x}$$
Average rate of change

\[ARC = \frac{f(b) - f(a)}{b - a} \]

Find ARC of \(f(x) = x^2 - 2x + 3 \) from \(-2\) to 1

Find equation of secant line for \(f(x) = x^2 - 2x + 3 \) between \(-2\) and 1
Average rate of change

\[ARC = \frac{f(b) - f(a)}{b - a} \]

Find ARC of \(f(x) = x^2 - 2x + 3 \) from \(-2\) to \(1\)

Chapters 2 and 3

Review for Final Exam
Average rate of change

\[ARC = \frac{f(b) - f(a)}{b - a} \]

Find ARC of \(f(x) = x^2 - 2x + 3 \) from \(-2\) to \(1\)

Find equation of secant line for \(f(x) = x^2 - 2x + 3 \) between \(-2\) and \(1\)
2.4 Library of Functions

- Square root, cube root
2.4 Library of Functions

- Square root, cube root
- Absolute value
2.4 Library of Functions

- Square root, cube root
- Absolute value
- Square, cube
2.4 Library of Functions

- Square root, cube root
- Absolute value
- Square, cube
- Reciprocal (1/x)
2.4 Library of Functions

- Square root, cube root
- Absolute value
- Square, cube
- Reciprocal (1/x)
- Greatest integer or “step” function
2.4 Library of Functions

- Square root, cube root
- Absolute value
- Square, cube
- Reciprocal (1/x)
- Greatest integer or "step" function
- Piecewise functions
2.4 Library of Functions

- Square root, cube root
- Absolute value
- Square, cube
- Reciprocal (1/x)
- Greatest integer or “step” function
- Piecewise functions
2.4 Library of Functions

- Square root, cube root
- Absolute value
- Square, cube
- Reciprocal (1/x)
- Greatest integer or “step” function
- Piecewise functions

Graph

\[
f(x) = \begin{cases}
3x + 1 & -3 < x < 1 \\
4 & 1 \leq x < 3 \\
(x - 4)^2 - 2 & x \geq 4
\end{cases}
\]
\[f(x) = \begin{cases}
3x + 1 & -3 < x < 1 \\
4 & 1 \leq x < 3 \\
(x - 4)^2 - 2 & x \geq 4
\end{cases} \]
2.5 Graphing Techniques

- Vertical shifts
- Horizontal shifts
- Compressions
- Stretches
- Reflections

\[f(x) = -\sqrt{4 - x} + 3 \] using transformations

Chapters 2 and 3

Review for Final Exam
2.5 Graphing Techniques

- Vertical shifts
- Horizontal shifts
- Compressions
- Stretches
- Reflections

RCS = Reflections, then Compressions, then Shifts
2.5 Graphing Techniques

- Vertical shifts
- Horizontal shifts
- Compressions
- Stretches
- Reflections

RCS = Reflections, then Compressions, then Shifts

Graph $f(x) = -\sqrt{4 - x} + 3$ using transformations
An equilateral triangle is inscribed in a circle of radius r. Express the circumference C of the circle as a function of the length x of the side of the triangle.
3.1 Linear Functions

- Graphs

Write an expression for the cost C of producing x bicycles in a day if C is a linear function of x. Each bicycle costs $50 to produce, and the fixed costs for the factory are $1200 per day.
3.1 Linear Functions

- Graphs
- ARC

Write an expression for the cost C of producing x bicycles in a day if C is a linear function of x. Each bicycle costs $50 to produce, and the fixed costs for the factory are $1200 per day.
3.1 Linear Functions

- Graphs
- ARC
- Increasing, Decreasing, Constant

Applications (word problems)

Write an expression for the cost C of producing x bicycles in a day if C is a linear function of x. Each bicycle costs $50 to produce, and the fixed costs for the factory are $1200 per day.
Graphs

ARC

Increasing, Decreasing, Constant

Applications (word problems)
Graphs
ARC
Increasing, Decreasing, Constant
Applications (word problems)
3.1 Linear Functions

- Graphs
- ARC
- Increasing, Decreasing, Constant
- Applications (word problems)

Write an expression for the cost \(C \) of producing \(x \) bicycles in a day if \(C \) is a linear function of \(x \). Each bicycle costs $50 to produce, and the fixed costs for the factory are $1200 per day.
3.3 Quadratic Functions

- Standard form: \(f(x) = ax^2 + bx + c \)
3.3 Quadratic Functions

- Standard form: \(f(x) = ax^2 + bx + c \)
- Vertex form: \(f(x) = a(x - h)^2 + k \)
3.3 Quadratic Functions

- Standard form: \(f(x) = ax^2 + bx + c \)
- Vertex form: \(f(x) = a(x - h)^2 + k \)
- Graph using transformations

Chapters 2 and 3
Review for Final Exam
3.3 Quadratic Functions

- Standard form: \(f(x) = ax^2 + bx + c \)
- Vertex form: \(f(x) = a(x - h)^2 + k \)
- Graph using transformations
- Vertex

\[
x_{\text{vertex}} = \frac{-b}{2a}, \quad y_{\text{vertex}} = f(x_{\text{vertex}})
\]
3.3 Quadratic Functions

- Standard form: \(f(x) = ax^2 + bx + c \)
- Vertex form: \(f(x) = a(x - h)^2 + k \)
- Graph using transformations
- Vertex
 \[
 x_{\text{vertex}} = \frac{-b}{2a}, \quad y_{\text{vertex}} = f(x_{\text{vertex}})
 \]
- Axis of symmetry
 \[x = x_{\text{vertex}} \]
3.3 Quadratic Functions

- Standard form: \(f(x) = ax^2 + bx + c \)
- Vertex form: \(f(x) = a(x - h)^2 + k \)
- Graph using transformations
- Vertex
 \[x_{\text{vertex}} = \frac{-b}{2a}, \quad y_{\text{vertex}} = f(x_{\text{vertex}}) \]
- Axis of symmetry
 \[x = x_{\text{vertex}} \]
3.3 Quadratic Functions

- Standard form: $f(x) = ax^2 + bx + c$
- Vertex form: $f(x) = a(x - h)^2 + k$
- Graph using transformations
- Vertex
 \[x_{\text{vertex}} = \frac{-b}{2a}, \quad y_{\text{vertex}} = f(x_{\text{vertex}}) \]
- Axis of symmetry
 \[x = x_{\text{vertex}} \]

Find the vertex of $f(x) = 2x^2 - 4x - 5$
A cylindrical silo is made with a flat circular top and sides using 2000 square feet of metal. Express the volume V of the silo as a function of the radius r.
A cylindrical silo is made with a flat circular top and sides using 2000 square feet of metal. Express the volume V of the silo as a function of the radius r.
We will do these next time