Iwahori - Hecke Algebras in Multiple Contexts

1) Hecke algebras for a reductive group
2) Presentation of spherical/finite/affine Hecke algebras
3) Quantum Schur - Weyl duality

1) Reductive Groups

Definitions

\(G \): reductive gp \(/F \): monarch, local field
\(O \): ring of ints. of \(F \)
\(P \): max’l ideal of \(O \)

\(B = \text{Borel subgp.} \)

\(K^o = \text{max’l compact subgp} \)

\(J = \text{Iwahori subgp.} \)

Favorite example

\(G = GL_n(\mathbb{Q}_p) \)
\(\mathfrak{O} = \mathbb{Z}_p \)
\(\mathfrak{P} = \langle p \rangle \)

\(B = \begin{pmatrix} * & \cdots & * \\ O & \ddots & \\ & & * \end{pmatrix} \)

\(K^o = \begin{pmatrix} \mathfrak{O} & \cdots & \mathfrak{O} \\ \vdots & \ddots & \vdots \\ \mathfrak{O} & \cdots & \mathfrak{O} \end{pmatrix} \)

\(J = \begin{pmatrix} \mathfrak{O} & \mathfrak{O} \\ p & \mathfrak{O} \end{pmatrix} \)
Let \(k \) be a compact open subgp. of \(G \). The Hecke alg. of \(G \) relative to \(k \) is the set of smooth compactly supp. \(k \)-biinvariant funs on \(G \):

\[
H_k := \left\{ \phi : G \rightarrow \mathbb{C}, \text{smooth cpt. supp.} \right\}
\]

\[
\phi(kgk) = \phi(g) \quad \forall k, k' \in K, \ g \in G \exists,
\]

w/ mult. defined as convolution.

Remarks

1) Reductive groups are hard

2) Hecke alg. are relatively simple: often finite (ish) dim.

3) Borel-Matsumoto: \(\exists \) corresp. btwn irreps of \(H_k \) and "admissible" irreps of \(G \) w/ a \(K \)-fixed vector \(v \) (\(k \cdot v = v \ \forall k \in K \)).

4) So Hecke algebras are a tool to understand reps of red. gps.

But what do Hecke algebras look like?
2) Presentations (Iwahori')

For this section, $G = GL_n$, (but can be done for any Cartan type).

$H_{k_0} = X_\ast(T) \cong \mathbb{Z}^n$ (spherical Hecke alg.)

\[H_B = \langle T_i, i=1, \ldots, n-1 \mid \begin{align*}
T_i T_i+1 &= T_i+1 T_i, \\
T_i T_j &= T_j T_i, & i \neq j \pm 1 \\
T_i^2 &= (q-1) T_i + q
\end{align*} \rangle \]

(finite Hecke alg.)

\[H_J = \langle T_i, i=0, \ldots, n-1 \mid \text{same reln's as for } H_B, \text{ but indices taken mod } n \rangle \]

(affine Hecke alg.)

Remarks

1) Not guaranteed a simple presentation of H_k for other subgps. K, but

2) H_{k_0} is commutative!
3) H_b is a deformation of the gp. alg of S_n:
 If $q \mapsto 1$

 $$H_b \mapsto \mathbb{C}[S_n].$$

So repn theory of finite Hecke algebras relate to repn. theory of S_n.

4) Exact sequences:

 $$1 \rightarrow P K^o \rightarrow J \rightarrow B(\mathcal{H}_b) \rightarrow 1$$

 $$\downarrow$$

 $$0 \rightarrow H_k^o \rightarrow H_j \rightarrow H_b \rightarrow 0$$

So to understand H_j, want to understand H_k^o, H_b.

3) Quantum Schur-Weyl Duality

First, classical S-W duality:

Let $V = \mathbb{C}^n$ be std. repn of $G = GL_n(\mathbb{C})$.

Now, take $V \otimes^k$, for $k \leq n$, and let G act diagonally:

$$g \cdot (V \otimes \cdots \otimes V_k) := g \cdot V_1 \otimes \cdots \otimes g \cdot V_k.$$
Let S_k act on $V \otimes k$ by permuting the factors:

$$(V \otimes \cdots \otimes V_k) \cdot \sigma = V_{\sigma^{-1}(1)} \otimes \cdots \otimes V_{\sigma^{-1}(k)}$$

These actions commute, and in fact are mutual centralizers.

Schur–Weyl Duality: As a (GL_n, S_k)-bimod, $V \otimes k$ decomposes as

$$V \otimes k = \bigoplus_{\lambda \vdash k} L^\lambda \otimes S^\lambda,$$

where the L^λ are (distinct) highest wt. modules, and the S^λ are (distinct) Specht mods.

Now, let V be the std. repn. of the quantum gp. $V := V_q(GL_n), q \neq \text{root of unity}$, and let U act on $V \otimes k$ via the coproduct map.

Since V not cocommut., we can't just permute the factors. Instead, we use the Yang–Baxter eqn. to define isomorphisms:

$$R_i : V_i \otimes \cdots \otimes V_i \otimes V_{i+1} \otimes \cdots \otimes V_k \cong V_j \otimes \cdots \otimes V_{i+1} \otimes V_i \otimes \cdots \otimes V_k.$$
Thm (Jimbo, '86): The alg. gen'd by the Ri is isom. to H_B (for GL_k), and the V and H_B actions are mutual centralizers, so we the decomp.

$$V^g = \bigoplus_{\lambda \in k} L^\lambda \otimes S^\lambda,$$

where L^λ, S^λ are irreduc. and deformations of the L^λ, S^λ.

Remarks

1) Jimbo's results helped kick-start huge breakthrough. One notable example: Jones' Field Medal work on knot invariants.

2) This section only holds for GL_n, not a reductive group of any other type.

3) Not surprising that $U_q(gln)$ is in S-W duality w/ a deformation of CE_{5n}, but it is remarkable that this deformation turned out to be the Hecke alg.
4) I am not aware of any "natural" reason for remark 3, and in light of remark 2, might be hard to have a general result. Would be very interesting if such a result existed.

\[
U(\mathbb{R}_2) = \langle e, f, h \mid [e, f] = 2h, \quad \square \rangle
\]

\[\exists k, k^{-1} \quad \square\]