What Is Number Theory?

1) Diophantine Equations and Elliptic Curves
2) L-Functions
3) Modular Forms
4) Tate's Thesis
5) Automorphic Representations and the Langlands Program

1) Diophantine Equations and Elliptic Curves

Pythagorean triples: \(a^2 + b^2 = c^2\), \(a, b, c \in \mathbb{Z}\)

By \(x^2 + y^2 = 1\), \(x, y \in \mathbb{Q}\)

Rational points on unit circle:

\[
\begin{align*}
 m &= \frac{y}{x}, \quad x, y \in \mathbb{Q} \\
 a &= b^2 - p^2, \quad p, q \in \mathbb{Z} \\
 b &= 2pq \\
 c &= p^2 + q^2
\end{align*}
\]

\(\bigcap\) all Pythagorean triples
Elliptic Curves

\[\text{area} = 6 \in \mathbb{Q} \]

Congruent Number Problem: which integers \(N \) are the area of a rational right triangle?

\(N \) congruent number \(\iff y^2 = x^3 - N^2 x \) for (particular) \(x, y \in \mathbb{Q} \)

Elliptic curve: nonsingular curve of form \(y^2 = x^3 + ax + b \)

Want to find rational points on elliptic curves \(\mathcal{E} \)
Can "add" rational points to find more \(\mathcal{E}(\mathbb{Q}) \) forms a group

Mordell-Weil: \(\mathcal{E}(\mathbb{Q}) \) is finitely-generated abelian

Tunnell: \(N \) congruent \(\iff \) \(E: y^2 = x^3 - N^2 x \), \(E(\mathbb{Q}) \cong \mathbb{Z} \)

Birch & Swinnerton-Dyer: \(\text{rank} \mathcal{E}(\mathbb{Q}) = \text{order of zero of the Hasse-Weil } L\text{-function } L(\mathcal{E}, s) \) at \(s = 1 \).

\[L(\mathcal{E}, s) = \prod_{p \text{ prime}} \left(1 - \frac{a_p}{p^{s}} + \frac{\varepsilon(p)}{p^{1-2s}} \right)^{-1} \]

involves \(\# E(\mathbb{F}_p) \) \(0 \) or \(1 \)

So we've turned this congruent \# problem into complex analysis.
2) L-functions

- Functions attached to number-theoretic objects
e.g. elliptic curves, field extensions, reps of \(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \),
 modular forms (later)
- Allow us to use complex analysis for number theoretic goals
- Equalities of different L-functions encode "reciprocity laws" and connections between different objects
 e.g. Modularity Theorem: L-function of elliptic curve \(\leftrightarrow \) L-function of some modular form \(\Rightarrow \) Fermat's Last Theorem

Simplest L-function: Riemann's \(\zeta \)
\[
\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s}, \quad \text{Re}(s) > 1
\]
\{ analytic continuation, else \}

Functional equation: \(\zeta(s) = 2^s \pi^{s-1} \sin\left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s) \)

Euler product:
\[
\zeta(s) = \prod_{p \text{ prime}} \frac{1}{1-p^{-s}}
\]

So by understanding \(\zeta(s) \), we can understand primes
Prime number theorem: \(\# \text{primes} \leq N \sim \frac{N}{\log(N)} \)

- Riemann explicit formula involves zeroes of \(\zeta(s) \)
- Riemann hypothesis: all (nontrivial) zeroes have \(\Re(s) = \frac{1}{2} \)
 - Puts tight bound on this count

3) Modular Forms

Generalizations of periodic functions, and we can do analysis on \(SL_2(\mathbb{Z}) \) upper half plane \(\mathbb{H} \) (linear fractional transformation)

\[f : \mathbb{H} \to \mathbb{H} \] modular form of weight \(k \) if

1) \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot f \cdot (z) = (cz + d)^k f \cdot (z) \)
2) \(f \) is holomorphic
3) \(f \) has "moderate growth"

"Generalizations" of periodic functions, and we can do analysis on elliptic curves to hyperbolic geometry

L-function of a modular form:

\[f \left(e^{2\pi i \theta} \right) = \sum_{h=1}^{\infty} a_h e^{2\pi i h \theta} \] (Fourier series)

\[L(s) = \sum_{h=1}^{\infty} \frac{a_h}{h^s} \]

Modularity theorem: \(\{ \text{L-functions for } \mathcal{E} \text{ elliptic curves} \} = \{ \text{L-functions for } \mathcal{M} \text{ modular forms} \} \)

\(\Rightarrow \) Fermat's Last Theorem
Generalizes instead of \mathbb{H}, use (a quotient of) a reductive group $G(\mathbb{R})$

Instead of $\text{SL}_2(\mathbb{Z})$, find functions invariant under some other arithmetic subgroup Γ, called automorphic forms.

4) Tate's Thesis

Q: How "far apart" are $x, y \in \mathbb{Q}$?

A: 1) $|x-y|$ (IR)

2) For primes p, $x \equiv y \pmod{p^k}$ for what k (\mathbb{Q}_p: p-adic numbers)

Lash all these together: adeles (\mathbb{A})

Tate: slick proof of analytic continuation and functional equation of Hecke L-functions

Idea: use the adeles, and split into "places" (\mathbb{Q}_p and IR)

5) Automorphic Representations, and the Langlands Program

$G(\mathbb{A})$: reductive group over adeles

$G(\mathbb{A}) \otimes L^2(G(\mathbb{Q}) \backslash G(\mathbb{A}))$: vector space of automorphic forms

Can decompose this action into "automorphic representations" Π.

- L-function $L(s, \Pi, r)$ associated to Π

- Both Π and $L(s, \Pi, r)$ break up into local factors

- Local factors of Π: p-adic representations
Langlands program: Set of conjectures about automorphic representations that encompass large swaths of number theory.

- Extremely difficult

Key conjecture: Langlands correspondence:

\[
\{ \text{L-functions of } \mathbb{Q} \} = \{ \text{L-functions of (certain) automorphic representations} \}
\]

Each of these areas has myriad offshoots.

Number theory doesn't fit in a neat little box. Instead, it encompasses anything that relates, even distantly, to these areas. Number theory is like a squid with tentacles reaching throughout mathematics.