1. **Rep theory definitions**

2. **Motivation**

3. **Classification of reps & corresponding L-factors**

4. **Whittaker models & Casselman-Shalika formula**

1. **Def.** A representation of a group G is a homomorphism $\pi : G \rightarrow GL(V)$, V a \mathbb{C}-vector space.
 - If we pick a basis for V, $GL(V) = GL_n(\mathbb{C})$, $n = \dim V$
 - Think of π as an action of G on V
 - If G has a topology, usually add more adjectives ("smooth rep")
 - $\dim (\pi, V) := \dim_{\mathbb{C}} V$

 - A one-dim rep $\pi : G \rightarrow \mathbb{C}^*$ is called a character.
 - Given (π, V), the func. $\chi(g) = \text{tr}(\pi(g))$ is also called the character of π

2. **Def.** A rep (π, V) is **irreducible** if the only subreps are $\{0\}$ and V.

3. **(Induction)**

 Def. Given $H \leq G$, and a rep (χ, W) of H, we can define a representation $\text{Ind}^G_H(\chi, V)$ of G, where
 $$ V = \left\{ f : G \rightarrow W \mid f(hg) = \chi(h)f(g) \quad \forall h \in H \right\} $$
 \[G \xrightarrow{(s \cdot f)} W \text{ by } (s \cdot f)(g) = f(gs).\]
Recall: Number Theorists & automorphic forms & L-functions -- (generating functions for arithmetic data)

\[G(A) \text{ acts by right multipl.} \]

\[\mathcal{L}^2(G(\mathbb{Q}) \backslash G(A)) \]

Given \(\phi \in \mathcal{L}^2(G(\mathbb{Q}) \backslash G(A)) \), get rep \((\Pi_\mathbb{Q}, V_\mathbb{Q})\) where \(V_\mathbb{Q} = G(A) \cdot \phi \). These are called \underline{automorphic representations}.

Given \(\pi \) of rep, have decomposition

\[\pi = \bigotimes_{\mathbb{P}} \pi_p \]

into local representations of \(G(\mathbb{Q}_p) \) \& \(G(\mathbb{R}) \).

Understanding local reps helps us define local \(\mathcal{L} \)-functions w\text{t} the nice properties we like (analytic continuation, functional eqn) \(\mathcal{L} = \prod_{\mathbb{P}} \mathcal{L}_{\pi_p}(s, x) \), \(\mathcal{L}_{\pi_p} \) \text{L-factors for local reps}

Slight (at least for \(p \neq 2 \)): representations are parametrized by characters of \(\text{tor} \cong (\mathbb{Q}_p^\times)^2 \)

\[B = \begin{pmatrix} \mathbb{Q}_p^\times & \mathbb{Q}_p^\times \\ 0 & 1 \end{pmatrix}, \quad U = \begin{pmatrix} 1 & 0 \\ 0 & \mathbb{Q}_p^\times \end{pmatrix}, \quad T = \begin{pmatrix} \mathbb{Q}_p^\times & \mathbb{Q}_p^\times \\ 0 & 1 \end{pmatrix}, \quad B : T U \]

\[\text{Important subgroups of } G: \]

\[\text{Classification} \]

\[\text{a) 1-dimensional reps: } \chi \text{det for } \chi \text{ a character of } \mathbb{Q}_p^\times \text{ (don't care too much about these)} \]

\[\text{b) Irreducible principal series } \pi(\chi_1, \chi_2): \]

*take character of \(T \), inflate to \(B \), induce to \(G \) ("parabolic induction")

Explicitly: Let \(\chi_1, \chi_2 \) be chars of \(\mathbb{Q}_p^\times \)

1. Define \(\chi \) on \(T \): \(\chi(\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}) = \chi_1(a) \chi_2(b) \)

2. Inflate to \(B \) by acting trivially on \(U \): \(\chi(\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}) = \chi_1(a) \chi_2(b) \)
\[\pi(\chi_1, \chi_2) = \text{Ind}_B^G \chi \]

If irreducible, define the \(L \)-factor:

\[L(s, \pi) = \frac{1}{(1 - \chi_1(p)p^{-s})(1 - \chi_2(p)p^{-s})} \]

*\(\chi_1, \chi_2 \) unramified - otherwise, replace \(\chi_i(p) \) with 0.

There are irreducibles, unless \(\chi_1 \chi_2^{-1} = \text{id}_p \), in which case a subquotient is irreducible. These look like:

\[\pi(\chi_1 \cdot p^{1/2}, \chi_2 \cdot p^{-1/2}) \]

called special reps.

\[L(s, \pi) = \frac{1}{1 - \alpha p^{-s}} \]

where \(\alpha = \chi(p)p^{1/2} = p^{1/2} \chi(p) \) (or 0 if \(\chi \) ramified).

(1) Supercuspidal reps — basically defined to be "all other reps." They are more complicated to describe.

The Jacquet module associated to a rep \((\pi, V)\) is

\[J_\pi = \left\langle \pi(u)v - v \mid u \in U, v \in V \right\rangle \]

An rep is supercuspidal if \(J_\pi = 0 \).

(Idea: principal series — \(U \) acts trivially; if \(V \) supercuspidal, no elt of \(U \) acts trivially. Turns out these are the only options)

- Obtained from chaos on non-split tori: \((\text{Ad} a)\) where \(a \in \mathbb{Q}_p \)

\[L(s, \pi) = 1 \]

Local Langlands:

\[
\begin{align*}
\{ \text{smooth} \} & \begin{cases} \text{irreducible} \end{cases} \rightarrow \{ \text{rep of } \text{Gal}_L(\mathbb{Q}_p) \} \\
\{ \text{2-D, semisimple} \} & \begin{cases} \text{Weil group} \end{cases} \rightarrow \{ \text{rep of } \text{Gal}(L/\mathbb{Q}_p) \}
\end{align*}
\]

& this bijection respects \(L \)-factors

& \(E \)-factors ← (come up in functional eqn \(\Lambda(m, s) = \zeta(m, s) \cdot \Lambda(m, 1 - s) \))
* In the case of $GL_2(\mathbb{F}_p)$ or $GL_2(\mathbb{Q}_p)$, this bijection is described explicitly in the books of Piatetski-Shapiro and Bushnell & Henniart, respectively.

Un the bijection, special & supercuspidal \[\longrightarrow \] irreps of Weil gp

principal series \[\longleftrightarrow \] reducible reps

(4) Whittaker models & Casselman-Shalika

Let ψ be a character of \mathbb{Q}_p. Define $\psi_u : \mathbb{V} \rightarrow \mathbb{C}$ by $\psi_u(1 x) = \psi(x)$.

Def A **Whittaker model** of a rep (π, \mathbb{V}) of G is an embedding $\mathbb{V} \hookrightarrow \text{Ind}_u^G \psi_u$.

In other words, it is a space $W(\pi)$ of functions $W : G \rightarrow \mathbb{C}$ s.t.

$W(1 x) g = \psi(x) W(g)$.

Why do we care about Whittaker models??

* $\text{Ind}_u^G \psi_u$ is multiplicity-free (if they exist, W. models are unique)

* Whittaker functions give "Fourier decompositions" of automorphic forms

* Useful in proving analytic continuation & fnc'd eqn for L-functs (by equating L's w/ "zeta integrals")
Casselman-Chalika formula:
\[\pi(x_1, x_2)[x_1, x_2 \text{ unramified}] \text{ admits a \(\text{Whittaker} \) model} \]

C-S formula computes the (spherical) Whittaker fun explicitly:
\[W_\lambda((p_{m_0}^0)) = (\star) \cdot \frac{\alpha_1^{m_0} - \alpha_2^{m_0}}{\alpha_1 - \alpha_2} \quad \text{where} \quad \alpha_1 = \text{char}(p) \quad \alpha_2 = \text{char}(C) \quad m > 0 \]

Some stuff

\[= \text{Schur poly} \ S_\lambda(\alpha_1, \alpha_2), \lambda = m \]

= value of character of irreps of
\[\text{GL}_2(C) \text{ on } (\alpha_1, \alpha_2) \]

For more general \(p \)-adic groups \(G \):
\[\text{value of} \]
\[\text{sph. Whitt. \ fun} \]
\[\text{of Langlands} \]
\[\text{dual group} \text{ } \left(\alpha_1 \alpha_2 \right) \]

Some references:

* Bump, "Automorphic Forms and Representations"

* Piatetski-Shapiro, "Complex Representations of \(\text{GL}(2, K) \) for finite fields \(K \)"

* Bushnell & Henniart, "The Local Langlands Conjecture for \(\text{GL}(2) \)"

* Kimball Martin, Automorphic representations course notes

* Emily's talk from summer rep theory seminar - see Claire's website &
 (good summary of P-S)