1. Why crystalline cohomology
 2. What is...
 3. Katz's conjecture
 4. Number of rational points.

Ⅲ. Why.

Def: A Weil cohomology theory is a contravariant functor.
 \(H^* : \) Smooth projective varieties over \(k \) → graded \(k \)-algebra \(k \), char
 \(H^*(X) \).

S.t. Satisfies axioms:
 - Finiteness
 - Vanishing property
 - Poincaré duality
 - Künneth isomorphism.

- Cycle maps
- Weak and Strong Lefschetz.

E.g.: 1. Singular coho
 2. Algebraic de Rham coho
 3. Étale coho
 4. Crystalline coho (p-adic).

- Zeta function of a variety over a finite field:
 \(X \)-proper smooth over \(k = \mathbb{F}_q \), \(\text{deg} X = d \).

\[
Z(T ; X_0 / k) = \exp \left(\sum_{i=1}^{\infty} \frac{N_i}{i} T^i \right)
\]

where \(l \neq \text{char} \), \(X = \mathbb{F}_q \), \(F_r \) is the relative Frobenius.

- Weil conjecture: \(\text{Pic}(T) \in Z[T] \), the eigenvalues of \(F_r \) have complex absolute value \(|\lambda| = q^{\frac{d}{2}} \).
- Take log det: \(N_r = \sum_{0 \leq i \leq 2d} (-1)^i \frac{1}{(2i)!} \lambda_i^{2i} \).

Cor: \(N_r = q^r + 1 + O(\text{char}^{d-r+1}) \).

- l-adic value: \(x \) is a.e. of \(H^i \), then \(q^d \) is a.e. of \(H^{2d-i} \) (Poincaré duality).
- alg. int \(\Rightarrow \) \(x \), l-adic unit.

- P-adic value? (p-adic cohomology theory).

Crystalline coho: \(H^*_c(X, \mathbb{F}) := \lim H^*_c(X, \mathbb{F}_l) \).

Étale: \(l \)-adic (\(\ll \lim \) l.c. e.c. sheaves).

\(l \)-adic, p-adic topo are not compatible, exacting taking (local systems).

(Zariski topology is too coarse, so we need étale site).

For local systems...
Ag de Rham: \(H^1(X, \Omega^k_{X/k}) \) (tangent bundle, Zariski open is enough).

Crystalline: Zariski, all thinking all orders.

Let \(k \): perfect field of char \(k = p \). \(W = W(k) \) Witt vector, \(W_n = W(k)/p^nW(k) \).
\(W_n \): \(n \)-th Witt vector of \(k \) (e.g. \(k = \mathbb{F}_p \), \(W(k) = \mathbb{Z}_p \), \(W_n(\mathbb{Z}_p) \)). For a scheme \(X \) over \(k \), define a site \(\text{Cris}(X/W_n) \) (\(X \) not over \(W_n \)).

Obj: \((U, T) \in \text{X} \). \(U \subseteq X \). \(T \): \(W_n \)-scheme. \(U \hookrightarrow T \) with defining ideal of \(U \).

Nilpotent and has a PD-structure compatible with PD-structure on \(W_n \).

Mor: \[U \to T \]
\[U' \to T' \]

Covering: \(\{(U_i, T_i)\} \) is a covering of \((U, T) \) if \(T_i \to T \) open immersion and \(T = U T_i \).

PD-Structure (Deformed Power Structure): \(A \) is a comm ring. Ideal in \(\mathfrak{a} \). \(\mathfrak{d} \) on \(I \) are a collection of maps \(\xi_i : I \to \mathfrak{a} \) s.t. (axioms).

\[\xi_i(x+y) = \xi_i(xy) = \xi_i(y) + \xi_i(x) \] abstract from: if \(A \) is a \(\mathbb{Q} \)-algebra, let \(\xi(x) = \frac{x^n}{n!} \).

Why PD-struct? (de Rham of formal lifting).
\[O \to \mathbb{C}(t) \to \mathbb{C}(t)dt \to 0 \]
\[O \to \mathbb{Z}/p^3 \to \mathbb{Z}/p^3dt \to 0 \]
\[T^d dt \]
\[T^d dt \]

Extra PD-struct allows us to do diff and integral. PD-structure in \(W_n \).

Site \(\text{crys}(X/W_n) \to \text{Topos}(\text{X}/W_n) \text{cris} \). Let \(F \in (X/W_n) \text{cris} \) (e.g. \(O_{X/W_n} \), \(O_{X/W_n}(\text{O}(T)) \)). \(\Gamma(F) \): = \(\Gamma(e, F) := \text{Mor}(e, F) \). \(e \) is the final object in \((X/W_n) \text{cris} \). (not representable). Enough objects on sheaves of abgp. \(H^i \text{cris}(X/W_n, \mathbb{F}) := i \)-th derived functor of \(\Gamma(F) \).

If \(X \) sm. proper / \(k \). \(H^i \text{cris}(X/W) := H^i \text{cris}(X/W, O_{X/W}) = \lim H^i \text{cris}(X/W_n, O_{X/W}) \).

Theorem: If \(Y/W \) is a smooth lifting of \(X/k \), then \(\exists \)

\[H^i \text{cris}(X/W) \cong H^i \text{cris}(Y/W) \] (independent to lifting).

Theorem: \(H^*(X/W) \otimes_{W} [\text{Quot}(W(k))] \) is a Weil coho theory.

\[\Phi(T) = \det(1 - TF^*|_{H^i_{et}}) = \det(1 - TF^*|_{H^i \text{cris}}) \] for \(\Phi \).
Katz's conjecture:

\[\phi = F^* : H^{cris}(X/W) \to H^{cris}(X/W) \] is a \(G \)-linear map \((\phi(ax) = a^p \phi(x)) \).

is an isogeny, i.e., \(\phi \otimes k \) is bijective.

\[H^m = H^{cris}(X/W) / (Torsion) \] is free of finite rank over \(W \).

Theorem (Dieudonné-Manin). Fix any \(m \).

\[H^m \otimes W(k) \cong \bigoplus_{i=1}^t W(k) / \mathfrak{m}_i^{n_i} \cdot L^{\cdot n_i} . \]

where \(\mathfrak{m}_i \), \(n_i \in \mathbb{Z} \), \((n_i) = 1 \), the rational number \(\frac{n_i}{m_i} \) are called slopes with multiplicity \(m_i \).

e.g.: If \(k = \mathbb{F}_p \), \(\phi : H^m \to H^m \) has e.g. \(\{d, m \} \) with \(ord_p d, m \) precisely the slopes with mult.

Newton polygon of \(X/W \) at \(dim = m \): Ntw

Hodge polygon of \(X/W \) at \(dim = m \): Let \(h^i = h^{i-1} = \dim p^i H^m(X, \Omega^i) \)

Theorem (Katz's conjecture):

If \(X/k \) is smooth and proper, then the Newton's polygon lies on or above the Hodge polygon of \(X(k) \). Moreover, assume \(H^{cris}(X/W) \) is torsion-free and Hodge to de Rham spectral \(E_1 \) degenerates at \(E_1 \), then \(h^i \) is the multiplicity of the elementary divisor \(p^i \) of the \(W \)-linear map \(\phi : o H^m(X/W) \to H^m(X/W) \) defined by \(\phi \).

Also, Ntw and Hdg \(m \) have the same endpoint \((b_m, C_m) \), \(b_m = \text{rank} H^{cris}(X/W) \), \(C_m = \text{length} H^{cris}(X/W) / \text{Im} \phi \).

e.g.: \(X/\mathbb{F}_p \): a curve of genus 3.

\[h^{0,1} = 3 \ h^0 = 3. \]
cor. If \(c = \min \{ i \in \mathbb{Z}_{\geq 0} \mid h^{i-1} \neq 0 \} \), then we have \(\text{ord } \alpha_{m,i} \geq c \)

cor. Assume \(\kappa = \mathbb{F}_q \). Let \(X/k \) be smooth complete intersection of \(d \) hypersurfaces with multidegree \(d \cdot a_1, \ldots, a_d \) with \(\text{deg } a_i = d \cdot a_i \) in \(\mathbb{P}^{d+1} \) over \(k \). Then,

\[
\mathbb{Z}(T, X/k) / \mathbb{Z}(P^d(T), P^d/k) \subseteq \mathbb{Z}[q^{c+1}] \quad \text{(weak Lefschetz)}
\]

or equivalently:

\[
\deg(X/k) = \deg(P^d(k)) \mod q^{c+1}
\]

(Deligne: SGA7. Gives a formula of \(c \) depend on \(d \).)