0.0.1 Dirichlet L-functions

- Dirichlet (1837) proved there are infinite number of primes in an arithmetic sequence \(b, b+m, b+2m, \ldots \) by using Dirichlet L-series \(\sum_{n>0} \frac{\chi(n)}{n^s} \), where

\[
L(s, \chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}
\]

- **Definition** Dirichlet character mod \(m \) \(\chi : \mathbb{Z} \to \mathbb{C} \) has conditions:
 1. \(\chi(n+m) = \chi(n) \quad \forall n \in \mathbb{Z} \)
 2. \(\chi(km) = \chi(k)\chi(m) \quad \forall k, m \in \mathbb{Z} \)
 3. \(\chi(n) \neq 0 \Leftrightarrow \gcd(n, m) = 1 \)
 4. **principal**: \(\chi_0(n) = 1 \Leftrightarrow \gcd(n, m) = 1 \)
 5. **trivial**, ie mod 1 \(\chi(n) = 1 \forall n \in \mathbb{Z} \)

also \(\chi : (\mathbb{Z}/m\mathbb{Z})^* \rightarrow \mathbb{C}^* \) extended to \(\mathbb{Z}/m\mathbb{Z} \) by \(\chi(n) = 0 \) for \(\gcd(m, n) > 1 \)

- Has an Euler product

\[
\sum_{n=1}^{\infty} \frac{\chi(n)}{n^s} = \prod_p (1 - \chi(p)p^{-s})^{-1}
\]

- Tried to follow Legendre, but failed until he started using analytic techniques:
 - Dirichlet made use of

\[
\Gamma(z) = \int_0^{\infty} x^{z-1}e^{-x}dx
\]

and \(s \to 1^+ \) in form of a well known identity

\[
\int_0^1 x^{k-1}\log^\rho \left(\frac{1}{x} \right) dx = \frac{\Gamma(1+\rho)}{k^{1+\rho}}
\]

where \(k > 0 \) is constant, \(\rho > 0 \) has \(\rho \to 0 \).
 - Used complex analysis and the Euler product
 - but did not need analytic continuation.
 - Seems to use \(\chi \to \) roots of unity but also needs \(\chi(n) = 0 \) when \(p \mid n \) to eliminate a lot of terms of \(\sum \chi(n)/n^s \) to show that

\[
\sum \frac{1}{q^{1+\rho}} \to \infty \text{ as } \rho \to 0
\]

where \(q = np + m \)

- Eisenstein proved analytic continuation and functional equation for a Dirichlet series related to \(\zeta \).
• Ernst Kummer (1839,40) introduced ζ of a cyclotomic field to investigate class number of these fields following Dirichlet

• Riemann (1859) used Poisson summation

$$\sum_{n \in \mathbb{Z}} f(n) = \sum_{n \in \mathbb{Z}} \hat{f}(n)$$

$$\hat{f}(\xi) = \int_{\mathbb{R}} f(x)e^{-2\pi i x \xi} \, dx$$

to show analytic continuation and functional equation of ζ which is the Dirichlet series with trivial character:

$$\xi(s) = \pi^{-s/2} \Gamma\left(\frac{s}{2}\right) \zeta(s) = \xi(1 - s)$$

• Dedekind (1893) extended ζ to arbitrary number fields of an algebraic extension K/\mathbb{Q} using trivial χ. Dedekind

$$\zeta_K(s) = \sum_{\mathfrak{a}} \frac{1}{N(\mathfrak{a})^s} = \prod_{p}(1 - N(p))^{-1}$$

a non-zero ideal in ring of integers \mathcal{O}_K of K and p is prime ideal, N is index $[\mathcal{O}_K : \mathfrak{a}] = |\mathcal{O}_K/\mathfrak{a}|$.

– Proven by Hecke (1917) to have meromorphic continuation and functional equation.

• Examples
 - The twisted mean square and critical zeros of Dirichlet L-functions
 - An explicit lower bound for special values of Dirichlet L-functions
 - Several expressions of Dirichlet L-functions at Positive integers
 - On asymptotic properties of the generalized Dirichlet L-functions
 - Simultaneous nonvanishing of Dirichlet L-functions and twists of Hecke-Maass L-functions in the critical strip
 - Explicit bounds on exceptional zeroes of Dirichlet L-functions

 - investigation of Dirichlet L-functions of Diaphontine numbers?! (very irrational?!)

0.0.2 Hecke L-functions

• A generalization of the Dirichlet L-function and in particular a generalization of Dedekind ζ

K number field,

v non-archimedean place

\mathcal{O}_K ring of integers of K,

$\mathfrak{p} \subset \mathcal{O}_K$ prime ideal

$N\mathfrak{p}$ number of elements in finite field $\mathcal{O}_K/\mathfrak{p}$

$|x|_v = |x|_\mathfrak{p} = (N\mathfrak{p})^{-\text{ord}_\mathfrak{p}(x)}$ for $x \in K$

For real embedding $\sigma : K \to \mathbb{R}$ for archimedean v $|x|_v = |\sigma(x)|$.
Leads to Hecke character (Grössencharacter) \(\chi_v : K^* \to \mathbb{C}^* \):

\[
\chi(x) = \prod_v \chi_v(x)
\]

with conditions:

1. \(x \in K \subset K_v^* \) implies
 \[
 \chi(x) = 1 \quad \text{product formula}
 \]
2. all but finite number of \(\chi_v \) be unramified, ie, trivial on \(\{ x \in K_v^* \mid |x|_v = 1 \} \)
3. For unramified place \(v \) corresponding to \(p \), \(\chi(p) = \chi_v(\varpi_v) \) for uniformizer \(\varpi \in K \)
4. Ordinary ideal \(a \subset \mathcal{O}_K \) only included in \(\sum \) if product of unramified primes

- Hecke L-function (1916)

\[
L_K(s, \chi) = \sum_a \frac{\chi(a)}{(Na)^s} = \prod_p \left(1 - \chi(p)(Np)^{-s} \right)^{-s}
\]

where \(a \), ideals of \(\mathcal{O}_K \) are products of prime ideals corresponding to places where \(\chi_v \) is unramified.

- \(\chi \) trivial, ie., \(\chi_v = 1, \forall v \) \(L(s, \chi) \) is Dedekind \(\zeta \) of \(K \): \(\sum (Na)^{-s} \). Furthermore, \(K = \mathbb{Q} \) becomes Riemann \(\zeta \).

- If \(\chi \) is finite order \(L_K(s, \chi) \) becomes Dirichlet L-function.

- Hecke: express L-function in terms of generalized \(\theta \)-function, which led to deriving analytic cont., functional equation, boundedness in vertical strips

0.1 Modular forms

- Hecke (1936) expanded L-functions into area of Modular forms: theta series:

\[
\theta(\tau) = \frac{1}{2} \sum_{n \in \mathbb{Z}} e^{\pi i n^2 \tau}
\]

holomorphic in \(\mathfrak{H} \), has

\[
\theta\left(\frac{-1}{\tau} \right) = C(\tau^{1/2}) \theta(\tau), \quad \theta(\tau + 2) = \theta(\tau)
\]

Is a modular form of weight \(k = 1/2 \) period \(\lambda = 2 \), \(C \) condition for group generated by \(\tau \mapsto \tau + 2 \) and \(\tau \mapsto -\frac{1}{\tau} \), ie has Taylor expansion

\[
f(\tau) = \sum_{n=0}^{\infty} a_n e^{\frac{2\pi in\tau}{\lambda}}
\]

which implies holomorphic at \(\infty \). (\(a_0 = 0 \) ⇒ cuspform.)
• Hecke: sequence \(a_0, a_1, \ldots \subset \mathbb{C} \) \(a_n = O(n^d) \), for some \(d > 0 \). Given \(\lambda > 0, k > 0, C = \pm 1 \), define:

\[
\phi(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}
\]

\[
\Phi(s) = \left(\frac{2\pi}{\lambda}\right)^{-s} \Gamma(s) \phi(s)
\]

\[
f(\tau) = \sum_{n=0}^{\infty} a_n e^{2\pi in\tau}
\]

led to

• **Theorem** (Hecke’s Converse Thm 1936) Following are equivalent:

 1. \(\Phi(s) + \frac{a_0}{s} + \frac{Ca_0}{k-2s} \) is an entire function bounded in vertical strips and satisfies functional equation \(\Phi(s) = C\Phi(k-s) \)

 2. \(f \) is a weight \(k \) modular form \(Mf_m(k, \lambda, C) \), period \(\lambda \), multiplier condition \(C \)

• Connects modular forms and L-series/functions, (leads to Wiles discoveries including Fermat’s thm)

• Maass forms (1949): non-holomorphic modular forms that are eigenfunctions of Laplacian.

0.2 Automorphic forms, Eisenstein Series

\[
E_s(z) = \sum_{\gamma \in (P \cap \Gamma) \backslash \Gamma} \text{Im}(\gamma z)^s
\]

\(\text{SL}_2(\mathbb{Z}) \backslash \text{SL}_2(\mathbb{R}) / \text{SO}(2) = \Gamma \backslash \mathcal{H} \), \(P \) parabolic, eg., upper triangular. Continues \(\xi \)

\[
\xi(s) = \pi^{-s/2} \Gamma\left(\frac{s}{2}\right) \zeta(s), \quad \xi(s) = \xi(1-s)
\]

• Selberg (1962) mero ctn for \(E_s : s(1-s)\xi(2s) \cdot E_s \) has analytic ctn to entire fcn of \(s \). Fcnl eqn:

\[
\xi(2s)E_s = \xi(2-2s)E_{1-s}
\]

Characteristics:

1. simple pole at \(s = 1 \) with residue \(3/\pi \).

2. \(\text{in} 0 < \text{Re}(s) < 1/2 \) poles at \(\rho/2 \) where \(\rho \) is non-trivial zero of \(\zeta(s) \).

• Lots of ways to use Eisenstein series to generate integral representations of L-functions with Euler products, use analytic characteristics of Eisenstein series (analytic continuation, functional equation)
Colin de Verdière (1982,3) Meromorphic continuation of Eisenstein involves distribution theory including Sobolev spaces, Friedrichs self-adjoint extension of a restriction of a symmetric unbounded operator, eg., the Laplacian
\[
\Delta = y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right)
\]
cuspforms are smooth, rapid decay, Eisenstein series is smooth moderate growth.

- Constant term of Eisenstein series
 \[c_p E_s(z) = \int_0^1 E_s(z + t) \, dt \]
 \[c_p E(x + iy) = y^s + \frac{\xi(2s - 1)}{\xi(2s)} y^{1-s} \]

- Rankin-Selberg method \(f, g \) cuspforms w/ F-series
 \[f(z) = \sum_{n>0} a_n e^{2\pi inz} \]
 then
 \[\int_{P \backslash \mathbb{H}} y^s f(z) \overline{g(z)} y^{2k} \frac{dx dy}{y^2} = (4\pi)^{-(s+2k-1)} \Gamma(s + 2k - 1) \sum_{n \geq 1} \frac{a_n \overline{b_n}}{n^{s+2k-1}} \]

- pullbacks of Eisenstein series, eg., Rankin triple product:
 \[\text{SL}_2 \times \text{SL}_2 \times \text{SL}_2 \hookrightarrow \text{Sp}_{6 \times 6} \]
 holomorphic cuspforms of weight \(2k \) for \(\text{SL}_2(\mathbb{Z}) \): \(f, \varphi, \psi \)
 \[\int \int \int (E \cdot \iota)(z_1, z_2, z_3) f(z_1) \varphi(z_2) \overline{\psi(z_3)} (y_1 y_2 y_3)^{2k-2} \, dx_1 dy_1 dx_2 dy_2 dx_3 dy_3 \]
 \[= \Gamma's \times \zeta's(\text{constant with} \pi) \times L_{f, \varphi, \psi}(s + 4k - 1) \]

- Iwasawa-Tate wraps everything up in the adele’s. Garrett MFM notes looks at \(\zeta \), Dirichlet L-function in terms of adeles/ideles, eg., \(\chi \) is a character on \(\mathbb{J}/k^\times \)

0.3 Some informal references

- (Garrett):
 - http://www.math.umn.edu/~garrett/m/v/basic_rankin_selberg.pdf
 - (Garrett) Colin de Verdière meromorphic continuation of Eisenstein series: http://www.math.umn.edu/~garrett/m/v/cdv_eis.pdf
 - http://www-users.math.umn.edu/~garrett/m/v/pseudo-cuspforms.pdf
• Gelbart, Stephen S.; Miller, Stephen D.
Riemann’s zeta function and beyond. (English summary)

• Dirichlet, Peter Gustav Lejeune
There are infinitely many prime numbers in all arithmetic progressions with first term and difference coprime
arXiv:0808.1408v2 [math.HO]

• Ireland, Kenneth F; Rosen, Michael I
A Classical Introduction to Modern Number Theory
Graduate texts in mathematics ; 84. 2nd ed.. New York : Springer-Verlag 1990

• Bruinier, Jan H (Jan Hendrik),
The 1-2-3 of Modular Forms : Lectures at a Summer School in Nordfjordeid, Norway
Universitext; SpringerLink (Online service),Berlin : Springer 2008