Midterm 2 Review

Note: This is not intended to be your only review. Please consult lecture and discussion notes, homework problems, worksheets, and quizzes.

1. Evaluate
$$\int_0^8 \int_{\sqrt[3]{y}}^2 e^{x^4} dx dy$$
.

- 2. Find the area of the region inside the circle $r = 2\cos(\theta)$ and outside the circle r = 1.
- 3. Find the volume of the solid that is under the surface $z = x^2y$ and above the triangle in the xy-plane with vertices (1,0), (2,1) and (4,1).
- 4. A lamina occupies the part of the disk $x^2 + y^2 \le a^2$ that lies in the first quadrant. (Feel free to refer to formulas in section 15.3)
 - (a) Find the centroid of the lamina.
 - (b) Find the center of mass of the lamina if the density function is $\rho(x, y) = xy^2$.
- 5. Find the volume of the solid that is bounded by the cylinder $x^2 + y^2 = 4$ and the planes z = 0 and y + z = 3.
- 6. Evaluate $\iiint_E xzdV$, where E is below the xy-plane, inside the sphere $x^2 + y^2 + z^2 = 4$ and the cone $3z^2 = x^2 + y^2$, and has $x \leq 0$. *Hint:* The cone makes an angle of $\frac{\pi}{3}$ with the negative z-axis.
- 7. Find the area of the part of the cone $z^2 = x^2 + y^2$ between the planes z = 1 and z = 2. *Hint:* The area of a surface $z = f(x, y), (x, y) \in D$, if f_x, f_y are continuous is $\iint_D \sqrt{(f_x(x, y))^2 + (f_y(x, y))^2 + 1} dA$
- 8. Evaluate $\iint_R (x+y)e^{x^2+y^2}dA$, where A is the rectangle enclosed by the lines x-y = 0, x-y = 2, x+y = 0, and x+y = 3.
- 9. Evaluate the line integral $\int_C \mathbf{F} \cdot dr$, where $\mathbf{F}(x, y, z) = (x + y^2)\mathbf{i} + xz\mathbf{j} + (y + z)\mathbf{k}$ and C is given by $\mathbf{r}(t) = t^2\mathbf{i} + t^3\mathbf{j} - 2t\mathbf{k}, 0 \le t \le 1$.