Midterm 3 Review

Note: This is not intended to be your only review. Please also refer to notes from lecture and discussion, homework, and quizzes.

1. Consider the vector field $F(x, y, z)=\left(x^{2} e^{z}, x^{2} y, y^{2}\right)$. Compute the quantity:

$$
\operatorname{div}((1, z, 0) \times \operatorname{curl}(F))
$$

2. Evaluate the line integral

$$
\int_{C}(-x y) d x+(x y) d y
$$

where C is the boundary of the square $0 \leq x \leq 1,0 \leq y \leq 1$, oriented counterclockwise.
3. Find a parametrization of the surface $x=3 z^{2}+8 y z$ and use it to find the tangent plane at $(3,0,1)$.
4. Let C be the perimeter of the triangle in \mathbb{R}^{3} with vertices $(1,0,3),(2,0,3)$, and $(1,1,3)$ in order. If $F(x, y, z)=\left(x e^{x}, y^{3}+x^{2}, x z\right)$, evaluate the line integral

$$
\int_{C} F \cdot d \mathbf{s} .
$$

5. Consider the vector field

$$
\mathbf{F}(x, y, z)=\left(y^{3}+z \cos (x), 3 x y^{2}+1, \sin (x)\right) .
$$

a) Is there a function $f(x, y, z)$ with $\nabla f=\mathbf{F}$? If so, find f. If not, explain why not.
b) Compute $\int_{C} \mathbf{F} \cdot d \mathbf{s}$, where C is the line segment from $(0,0,1)$ to $(0,2,3)$.
6. Give a parametrization for the cone $x^{2}+y^{2}=z^{2}$ between $z=0$ and $z=2$. Use a surface integral to verify that the surface area is $4 \sqrt{2} \pi$.
7. Suppose we have a fluid in \mathbb{R}^{3} with flow given by the vector field $F(x, y, z)=(x, y, 1)$. Suppose we have a surface parametrized by $\phi(u, v)=(u+v, v, u v)$ for $0 \leq u \leq 1$, $2 \leq v \leq 3$. Find the flux through this surface. Assume the surface is oriented upwards.
8. Evaluate $\iint_{S} F \cdot d S$ where $F=\left(2 x z, 1-4 x y^{2}, 2 z-z^{2}\right)$ and S is the boundary of the solid bounded by $z=6-2 x^{2}-2 y^{2}$ and the plane $z=0$.

