Closed book, closed notes, scientific calculators only. CELL PHONES OFF. In each problem, show your work.

1. (20 pts.) Calculate the iterated integral

\[\int_0^1 \int_y^1 y^3 e^{x^2} \, dx \, dy \]

2. (6 + 14 pts.) (a) Calculate \(\iint_{\{x^2+y^2 \leq 4\}} (x^2+y^2)^{3/2} \, dA \)

(b) Let \(T \) be the triangular lamina with vertices \((0,0), (1,0), (0,1)\). If the density of the material is \(k y \) (\(k \) constant), find the \(y \)-coordinate of the center of mass of \(T \).

3. (20 pts.) Let \(R \) be the region above the cone \(z = \sqrt{x^2+y^2} \) but inside the sphere \(x^2+y^2+z^2 = 4 \). Use spherical coordinates to calculate \(\iiint_{R} z^3 \, dV \).

4. (20 pts.) Consider the cylindrical surface \(y^2 + z^2 = 36 \). Take that portion of the surface which lies inside (the pipe) \(x^2 + y^2 = 36 \). What is the surface area of that chunk of the cylinder?

Hint: view things with \(z \)-axis pointing out of the paper.

5. (20 pts.) Let \(R \) be the region above the \(xy \)-plane under the cone \(z = 4 \sqrt{x^2+y^2} \) and inside the cylinder \(x^2+y^2 = 2y \). Calculate \(\iiint_{R} y \, dV \).

Hint: use cylindrical coords.