Lecture 12
(26 Feb)

2 Notes

Lec 10 p. 42 Stirling (Corollary).

We also have:

Thm (Stirling)

\[
\frac{r'(z)}{r(z)} = \log z - \frac{1}{2z} + \sum_{k=1}^{R} \frac{(-B_{2k}}{2k}) \frac{z^{-2k}}{z^{2k}} + O_{R} \left(\frac{1}{|z|^{2R+1}} \right)
\]

as \(z \to \infty \) in \(\text{Arg } z \leq \pi - \delta \).

PF

Call all the \(\overline{z R + t} \) integral term in (42) Thm \(r(z) \).
Note \(r(z) \) is nicely analytic and \(r(z) = O(z^{-2R-1}) \)
by the Cor on (42). But:

\[
r'(z) = \frac{1}{2\pi i} \oint_{|w-z|=1} \frac{r(w)}{(w-z)^2} dw.
\]

Just use \(\text{Arg } z \leq \pi - 2\delta \) in place of \(\text{Arg } z \leq \pi - \delta \).

Done. \(\square \)

About \(r'(z) \neq 0 \), Lec 10 p. 26. One can avoid Hurwitz's thm.

Thm

Let \(f_n(z) \to f(z) \) on \(|z|<R \) compacta. We assume
\(f_n, f \) are analytic. Let \(f_n(z) \neq 0 \) for all \(z \) and
\(f(z) \neq 0 \). Then: \(f(z) \neq 0 \).
Zeros of f are isolated. Hence finite # on each $|z| \leq R - \varepsilon$.

Find $R_n \uparrow R$ so $f(R_n e^{i\theta}) \neq 0$.

Fix any N. Find $m, M > 0$ so $m \leq |f(R_n e^{i\theta})| \leq M$.

By uniform convergence,

$$\frac{m}{2} \leq |f_n(R_n e^{i\theta})| \leq 2M, \quad n \geq N.$$

Apply max mod principle to f_n AND $1/f_n$. Get

$$|f_n(z)| \leq 2M, \quad n \geq N.$$

$$|\frac{1}{f_n(z)}| \leq \frac{2}{m}$$

on $|z| \leq R_N$. So,

$$\frac{m}{2} \leq |f_n| \leq 2M.$$

Let $N \to \infty$ to get $\frac{m}{2} \leq |f| \leq 2M$ on $|z| \leq R_N$.

Now let $N \to \infty$. Done.

END OF NOTES

We then turned to the issue of the entire $f(s)$

$$\zeta_0(s) = s(s-1) \pi^{-5/2} \Gamma(\frac{5}{2}) \Gamma(s)$$

$$\zeta_0(s) = \zeta_0(1-s)$$

order 1, type ∞

and trying to get a product expansion over the zeros ζ_0 trying to get a "Hadamard factorization" of ζ_0 to justify Riemann's
unproved assertion. [from 1859]

Standard lemmas.

Lemma 1

$D = \text{simply-connected domain}$

Let $f = u + iv$ be analytic on D_0.
Then u is harmonic on D (i.e. C^2 and $u_{xx} + u_{yy} = 0$).

Conversely, given real-valued u harmonic on D_0, we can cook up v, harmonic on D_0, so $F = u + iv$ is analytic on D_0.

Cor

Every harmonic u on D is actually C^∞.

Lemma 2 (mean-value property)

Let u be harmonic on D (as above).
Let $|z - z_0| \leq R$ be contained in D_0.
Then

$$u(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + R e^{i\phi}) \, d\phi$$

Lemma 3

D as above. Let g be analytic on D and $g(z) \neq 0$. We can always find an analytic function $\phi(z)$ on D such that $\exp(\phi) = g$.

[ϕ is unique up to $+2\pi i k$]
Theorem (Jensen's formula) — **Lemma 4**

D as above. Let \(\{ |z| \leq R \} \subseteq D \). Let \(f \) be analytic on \(D \), \(f \neq 0 \) on \(|z| = R \), \(f(0) \neq 0 \).

Then:

\[
\ln(f(0)) + \sum \ln \frac{R}{|a_j|} = \frac{1}{2\pi} \int_0^{2\pi} \ln(f(Re^{i\theta})) d\theta.
\]

Here \(a_j, \ldots, a_m \) are the zeros of \(f \) in \(0 < |z| < R \), listed with multiplicity.

Proof

Wlog \(D = \{ |z| < R + \varepsilon \} \), \(\varepsilon \) tiny.

Wlog \(f \neq 0 \) on \(\{ R \leq |z| < R + \varepsilon \} \). Form analytic \(F(z) \):

\[
F(z) = f(z) \prod_{j=1}^m \frac{R^2 - a_j^2 z}{R(z - a_j)}.
\]

Get \(F = fF \) on \(|z| = R \), \(F(z) \neq 0 \) on \(|z| < R + \varepsilon \).

Apply Lemma 3 to get \(\log F(z) \). By Lemma 2 + 1)

\[
\ln(F(0)) = \frac{1}{2\pi} \int_0^{2\pi} \ln(f(Re^{i\theta})) d\theta.
\]

Done.

If \(f(0) = 0 \), people usually just pass to \(\frac{f(z)}{z^N} \).
Theorem (Lemma 5)

Let \(f \) be entire of order \(\leq \rho \). \((f \not= 0) \)

Then, counting with multiplicity,

\[
n(r) \equiv N[\text{zeros of } f \text{ in } |z| \leq r] = O(r^{\rho + \varepsilon})
\]

for all \(r \) large. Here \(\varepsilon > 0 \).

Proof:

If \(f(0) = 0 \Rightarrow \text{pass to } g = \frac{f(z)}{z^N} \). \(g \) is still entire and has order \(\leq \rho \).

WLOG \(f(0) = 1 \). Know \(\ln M(R; f) \leq R^{\rho + \varepsilon} \), large \(R \).

Perturb \(R \) slightly to make \(f(Re^{i\theta}) \not= 0 \).

Apply Lemma 4 (Jensen):

\[
0 + \sum_{j=1}^{m} \ln \frac{R}{|a_j|} = -\frac{1}{2\pi} \int_{0}^{2\pi} \ln |f(Re^{i\theta})|d\theta \leq R^{\rho + \varepsilon}
\]

Hence:

\[
n(\frac{R}{2}) \ln 2 \leq R^{\rho + \varepsilon}
\]

\[
\Rightarrow n(r) = O(r^{\rho + \varepsilon}) \text{ all large } r. \quad \Box
\]
KEY THM (Lemma 6, Hadamard/Borel/Caratheodory)

I as above. \(f \) analytic on \(D \).
Suppose \(|z - z_0| \leq R_2 \leq D_0 \). Let \(f = \sum_{n=0}^{\infty} c_n (z - z_0)^n \)
on the closed disk.

Assume further that

\[
\text{Re } f(z) \leq M \quad \text{KEY}
\]
on the closed disk. Then:

(A) \(|c_n| \leq \frac{2}{R^n} \left(M - \text{Re } c_0 \right) \), \(n \leq 1 \)

(B) \(|f(z) - f(z_0)| \leq \frac{2R}{R - r} \left(M - \text{Re } c_0 \right) \), \(1 \leq |z - z_0| \leq r < R \)

(C) \(\left| \frac{f^{(k)}(z)}{k!} \right| \leq \frac{2R}{(R - r)^{k+1}} \left(M - \text{Re } c_0 \right) \), \(k = 1, 2, \ldots \)

PF

See Ingham 50-51. Famous trick in this proof (starts 50 bottom).

\[\sum_{n} \frac{1}{\lambda_n \gamma^\gamma} < \infty \quad \text{for each } \gamma > \beta. \]
Pf

Take \(\delta \) tiny. Look at \(\int_{|z|=\delta} r^{-\gamma} d\mu(r) \) and integrate by parts.

Corollary

Let \(f \) be entire and \(f(0) \neq 0 \). Then:

\[
\sum \frac{1}{|a_n|^{p+\varepsilon}} < \infty, \text{ each } \varepsilon > 0.
\]

Pf

Lemma 5 + 7. \(\square \)

Thus, we always have (for \(f(z) \) entire)

\[
\sum \frac{1}{|a_n|^{\|p\|+1}} < \infty.
\]

We let

\[
p = \|p\| + 1
\]

(Do not confuse \(p \) with a prime!)

when we play with a given \(f_0 \).
When p is a non-negative integer, following Weierstrass it is customary to define

$$
E(u; j, p) = \begin{cases}
1 - u, & p = 0 \\
(1-u) \exp \left[u + \frac{u^2}{2} + \cdots + \frac{u^p}{p} \right], & p \geq 1
\end{cases}
$$

Note that $E(z; j, p)$ is entire.

Take $|u| \leq \lambda < 1$. With some branch of \log

$$
\log E(u; j, p) = \log (1-u) + u + \cdots + \frac{u^p}{p}
$$

$$
= -\sum_{n=1}^{\infty} \frac{u^n}{n} + u + \cdots + \frac{u^p}{p}
$$

$$
= -\sum_{n=p+1}^{\infty} \frac{u^n}{n},
$$

Clearly

$$
|\log E(u; j, p)| \leq \frac{|u|^{p+1}}{1 - |u|}, \quad (p = 0 \text{ OK too}).
$$

Hence:

$$
\ln |E(u; j, p)| \leq \frac{|u|^{p+1}}{1 - \lambda}, \quad |u| \leq \lambda < 1.
$$
Given \(p \geq 0 \). Also given \(a_n \in \mathbb{C} - \{0\} \),
\(a_n \to \infty \), and
\[
\sum_{n} \frac{1}{|a_n|^{p+1}} < \infty \text{.}
\]

We call
\[
\prod_{n=1}^{\infty} E\left(\frac{z}{a_n}, p\right)
\]
a canonical product of genus \(p \).

\section*{Theorem}

In the above, the canonical product of genus \(p \) converges uniformly and absolutely on \(\mathbb{C} \)-compacta. Hence it is an entire function with zeros exactly at \(\{a_n\} \).

\section*{Proof}

We use our standard reduction to the \"\(\sum_{k=1}^{\infty} \log(1+b_k(z)) \) theorem\".

Take \(K = \{ |z| \leq R \} \). Restrict attention to \(|a_n| > 1000R \). Hence, in products, each term has
\[
\left| \frac{z}{a_n} \right| < \frac{1}{1000} \quad \text{for } z \in K.
\]
Get:
\[| \log \mathbb{E} \left(\frac{x}{an} \middle| p \right) | < \frac{1}{1 - \frac{1}{1000}} \]
\[= (1.01) \left| \frac{x}{an} \right|^{p+1} \]
\[\leq (1.01) \left(\frac{1}{1000} \right)^{p+1} \]
\[\leq 0.002 \]

Therefore, the "log" is actually \(\log \).

And:
\[| \log \mathbb{E} \left(\frac{x}{an} \middle| p \right) | \leq 0.002 \]
\[| \mathbb{E} \left(\frac{x}{an} \middle| p \right) - 1 | \leq 0.01 \]

i.e. "\(|b_n(z)| \leq 0.01\)" (on \(K \)).

Must look at
\[\sum_n | \log (1 + b_n(z)) | \]
on \(K \). This sum will be
\[\leq \sum_n (1.01) \left(\frac{R}{|an|} \right)^{p+1} \] \{by the above\}

For all \(z \in K \). \Rightarrow all is OK. \(\Box \)
When we study canonical products, it is helpful to conceptualize them as

$$
\prod E\left(\frac{z}{an + p} \right) = \prod_{1 \leq |n| \leq 1000R} E\left(\frac{z}{an + p} \right)
$$

$$
\cdot \prod_{|n| > 1000R} E\left(\frac{z}{an + p} \right)
$$

over \(\{ |z| \leq R \} \).

\[\text{THIS PART IS NONZERO}\]

THEOREM (preliminary factorization)

Let \(f \) be entire. Let the order be \(p < \infty \).

Put \(p = \left\lfloor \frac{p}{2} \right\rfloor \). Let the zeros of \(f \) in \(\mathbb{C} - \{0\} \) be \(\{an \}_{n \neq 0} \). [This set could be empty.]

We then have:

$$
f(z) = z^N \exp \left[\phi(z) \right] \prod_{an \neq 0} E\left(\frac{z}{an + p} \right)
$$

where \(\phi \) is some entire fun and where the product (if infinite) is abs + uniformly convex on \(\mathbb{C} \) compact.
\textbf{Pf}

Pass first to \(g(z) = \frac{f(z)}{z^N} \), as usual.

The fun \(g \) is entire, order \(\rho \), \(g(0) \neq 0 \).

Now review (9) and form

\[h(z) = \frac{g(z)}{\prod_{a_n \neq 0} E(z, a_n, \rho)} \]

See (10) top. Get \(h(z) \neq 0 \) for all \(z \in \mathbb{C} \).

By Lemma 3 applied to \(h(z) \), we can write \(h = \exp(\phi(z)) \). Done.

Hadamard realized, in studying Riemann's work, that he needed some way of controlling \(\phi(z) \) using only information about \(\Re \phi(z) \).

This is what led to p. 6 Key Thm!
Hadamard's Factorization Theorem \(\approx 1893 \)

Given the situation of \(\phi(z) \) THM.

We then have that \(\phi(z) \) must be a polynomial of degree \(\leq \rho \).

(Recall that \(\rho = \Omega(1) \).)

In the case of \(\Theta_0(s) \), we had \(\rho = 1 \) and type \(\tau = \infty \). So, here,

\[
\Theta_0(s) = e^{As+B} \prod_{n} E\left(\frac{s}{\alpha_n}; 1\right).
\]

Lec II p. 31

(\text{current-day})

The proof of the HFT either follows an approach of \underline{Landau} or else one based on the so-called Poisson–Jensen formula [a very common identity used in Nevanlinna theory II]. The proof is \underline{function theory}, not number theory.
The Landau approach is remarkable for its simplicity. See:

Landau, Vorlesungen über Zahlentheorie,
Satz 423 (from 1927)

or

Ingham, pages 54(bottom) - 55(bottom)
is compressed, but follows Landau.

I presented the details of this in Lecture #12 and the first half of Lecture #13. I omit them here!