Integration in Multivariable Calculus

1. Integrals over 1-dimensional objects.
 - "Calculus I" Integrals: These are integrals of a function \(f(x) \) over a 1-dimensional interval \([a, b]\) in \(\mathbb{R}^1 \). Geometrically, \(\int_a^b f(x) \, dx \) computes the (signed) area between the graph of the function \(f(x) \) and the interval \([a, b]\).
 - Line Integrals: These are integrals over a curve \(C \). If \(C \) is a curve in \(\mathbb{R}^2 \), we will suppose it has a parametrization of the form \(r(t) = \langle x(t), y(t) \rangle \), where \(a \leq t \leq b \); if \(C \) is a curve in \(\mathbb{R}^3 \), we will suppose that \(r(t) = \langle x(t), y(t), z(t) \rangle \), where \(a \leq t \leq b \).
 - For a function:
 - With respect to arc length: \(\int_C f \, ds = \int_a^b f(r(t)) \left| r'(t) \right| \, dt \)
 - With respect to \(x \) (or \(y \) or \(z \)): \(\int_C f \, dx = \int_a^b f(r(t)) \frac{dx}{dt} \, dt \) or \(\int_a^b f(r(t)) \frac{dy}{dt} \, dt \) or \(\int_a^b f(r(t)) \frac{dz}{dt} \, dt \)
 - For a vector field: \(\int_C \mathbf{F} \cdot d\mathbf{r} = \int_a^b \mathbf{F}(r(t)) \cdot r'(t) \, dt \)
 * Special cases:
 - \(\int_a^b 1 \, dx \) equals the length of \([a, b]\)
 - \(\int_C 1 \, ds \) equals the length of \(C \)

2. Integrals over 2-dimensional objects.
 - Double Integrals: These are integrals of a function \(f(x, y) \) over a 2-dimensional region \(D \) in \(\mathbb{R}^2 \). Geometrically, \(\int_D \int f(x, y) \, dA \) computes the (signed) volume between the graph of the function \(f(x, y) \) and the region \(D \).
 - Surface Integrals: These are integrals over a surface \(S \) in \(\mathbb{R}^3 \). We will suppose it has a parametrization of the form \(r(u, v) = \langle x(u, v), y(u, v), z(u, v) \rangle \) where \(u \) and \(v \) lie in some 2-dimensional parameter domain \(D \).
 - For a function: \(\iint_S f \, dS = \iint_D f(r(u, v)) \left| r_u \times r_v \right| \, dA \)
 - For a vector field: \(\iint_S \mathbf{F} \cdot d\mathbf{S} = \iint_D \mathbf{F}(r(u, v)) \cdot (r_u \times r_v) \, dA \)
 * Special cases:
 - \(\iint_D 1 \, dA \) equals the area of \(D \)
 - \(\iint_S 1 \, dS \) equals the (surface) area of \(S \)

3. Integrals over 3-dimensional objects.
 - Triple Integrals: These are integrals of a function \(f(x, y, z) \) over a 3-dimensional solid region \(E \) in \(\mathbb{R}^3 \). Geometrically, \(\iiint_E f(x, y, z) \, dV \) computes the (signed) 4-dimensional volume between the graph of the function \(f(x, y, z) \) and the region \(E \).
 * Special case: \(\iiint_E 1 \, dV \) equals the volume of \(E \).
* Relevant Theorems:

- **The Fundamental Theorem of Line Integrals:** If \(\mathbf{F} \) is a conservative vector field (so that \(\mathbf{F} = \nabla f \) for some function \(f \)) and if \(C \) is a smooth curve with parametrization \(\mathbf{r}(t) \) \((a \leq t \leq b)\), then
 \[
 \int_C \mathbf{F} \cdot d\mathbf{r} = \int_C \nabla f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))
 \]
 This specializes to **The Fundamental Theorem of Calculus:** If \(g \) is an “antidifferentiable” function (so that \(g = f' \) for some function \(f \)) and if \([a, b]\) is some interval, then
 \[
 \int_a^b g(x) \, dx = \int_a^b \frac{d}{dx} f(x) \, dx = f(b) - f(a)
 \]

- **Stokes’ Theorem:** If \(\mathbf{F}(x, y, z) \) is a vector field (with all three component functions differentiable) and if \(C \) is a simple, piecewise-smooth, positively-oriented, and closed curve in \(\mathbb{R}^3 \) that forms the boundary of an oriented smooth surface \(S \), then
 \[
 \iint_S \text{curl}(\mathbf{F}) \cdot d\mathbf{S} = \int_C \mathbf{F} \cdot d\mathbf{r}
 \]
 This specializes to **Green’s Theorem:** If \(\mathbf{F}(x, y) \) is a vector field (with both component functions \(P(x, y) \) and \(Q(x, y) \) differentiable) and if \(C \) is a simple, piecewise-smooth, positively-oriented, and closed curve in \(\mathbb{R}^2 \) that forms the boundary of a region \(D \), then
 \[
 \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA = \int_C \mathbf{F} \cdot d\mathbf{r}
 \]

- **The Divergence Theorem:** If \(\mathbf{F}(x, y, z) \) is a vector field (with all three component functions differentiable) and if \(S \) is a smooth, positively-oriented, closed surface in \(\mathbb{R}^3 \) that forms the boundary of a solid region \(E \), then
 \[
 \iiint_E \text{div}(\mathbf{F}) \, dV = \iint_S \mathbf{F} \cdot d\mathbf{S}
 \]

Note: In each case, these say that an integral of some type of “derivative” over a region equals an integral over the boundary of that region:

- Fundamental Theorem of Line Integrals
 “Derivative”: Gradient
 Region: Curve (with boundary a pair of points: the start point and end point of the curve)

- Stokes’ Theorem
 “Derivative”: Curl
 Region: Surface (with boundary a closed curve)

- Divergence Theorem
 “Derivative”: Divergence
 Region: Solid 3-dimensional region (with boundary a closed surface)