Erect, arched in disdain,
the integrals drift from left
across white windless pages
to the right,
serene as swans.

Tall
beautiful seen from afar
on the wavering water, each
curves with the balanced severity
of a fine tool weighed in the palm.

Gaining energy now, they
break into a canter–stallions
bobbing the great crests of their manes.
No one suspects their power
who has not seen them rampage.

Like bulldozers, they build
by adding
dirt to dirt to stumps added
to boulders to broken glass added
to live trees by the roots added
to hillsides, to whole
housing developments
that roll, foaming before them,
the tumbling end of a broken wave
in one mangled sum: dandelions, old
beer-cans and broken
windows–gravestones all
rrolled into one.

Yes, with the use of tables
integration is as easy as that:
the mere squeeze of a trigger, no
second thought. The swans
cannot feel the pain
it happens so fast.

-Jonathan Holden
For Tuesday workshop, get started on homework.

1. (Thursday Workshop) Choose two or three of the following definite integrals and approximate them using rectangles. Make one estimate that is smaller than the actual integral and one that is larger. Use enough rectangles to guarantee at least one decimal place of accuracy. Guess the actual value (if you already know it, pretend you don’t.) At the end of workshop, try to combine everyone’s information to draw some conclusions.

 • $\int_0^2 x^2 \, dx$
 • $\int_0^4 x^2 \, dx$
 • $\int_0^\pi/4 \cos(x) \, dx$
 • $\int_0^\pi/6 \cos(x) \, dx$
 • $\int_0^\pi/3 \cos(x) \, dx$
 • $\int_0^\pi/2 \cos(x) \, dx$
 • $\int_1^2 \frac{1}{x} \, dx$
 • $\int_1^3 \frac{1}{x} \, dx$
 • $\int_1^4 \frac{1}{x} \, dx$
 • $\int_0^1 e^x \, dx$
 • $\int_0^2 e^x \, dx$
 • $\int_0^3 e^x \, dx$

2. Section 5.3, problems 5, 6, 22, 37, 41, 52, 55, 64, 66.

3. Section 8.3, problems 14, 15. Section 8.4, problems 5a, 5c.

4. Section 6.3, problems 1a, 1c, 1f, 2a, 2b, 2c (sigma notation)

5. In this problem you will prove that $\int_0^b x^3 \, dx = \frac{b^4}{4}$.

 (a) Approximate this area using n rectangles of equal width. Write one formula (in sigma notation) which overestimates the area and one which underestimates it.

 (b) Use the identity $\sum_{i=0}^n k^3 = \left(\frac{n(n+1)}{2} \right)^2$ to simplify the two formulas. (If you want to see a nice proof of this identity, look at section 6.3, problem 8)

 (c) How do these formulas behave as n approaches ∞? Conclude that $\int_0^b x^3 \, dx = \frac{b^4}{4}$.
6. Sketch two possible antiderivative graphs for each of the following functions: