18.089 Homework 2

Summer 2010

Due Monday, June 14

1. Graph the curve defined by the parametric equations \(y = \sin t \), \(x = \sin t \) as \(t \) varies over all of \(\mathbb{R} \). How would you describe this curve in rectangular coordinates (i.e., without using a parameter)?

2. At time \(t \), a particle has position vector given by \(\mathbf{R}(t) = (\cos t, \sin t, t) \). Compute its velocity, acceleration and speed as functions of \(t \).

3. Let \(\ell \) be the line passing through the points \((0, 1)\) and \((1, 0)\) (in rectangular coordinates). Given three equations for this line: one in rectangular coordinates, one in parametric coordinates and one in polar coordinates.

4. What is the intersection of the line \(\frac{x-1}{1} = \frac{y}{2} = \frac{z+2}{2} \) and the plane \(x + y + z = 3 \)?

5. Compute the arclength of a single arch of the cycloid generated by a circle of radius \(r \).

6. Suppose a particle moves according to \(\mathbf{R}(t) = e^t \cos t \, \hat{i} + e^t \sin t \, \hat{j} \). Compute its velocity and acceleration vectors. Then find its speed, and the magnitude of the tangential and normal components of acceleration.

7. The curve given in polar coordinates by \(r = 1 - \sin \theta \) is called a \textit{cardioid}.

 (a) Sketch the cardioid.

 (b) Compute its arclength.

 (c) Compute the area that it bounds.

 (You may want to use the half-angle formula \(\sqrt{\frac{1-\cos \theta}{2}} = \sin \frac{\theta}{2} \) for \(0 \leq \theta \leq 2\pi \). (For other values of \(\theta \), the two sides may disagree by a sign.))

8. The curve given in polar coordinates by \(r = 1 + 2 \sin \theta \) is called a \textit{limaçon}. Sketch it – note in particular the existence of an inner and outer loop. Compute the area bounded by the inner loop.

9.