Combinatorics of diagrams of permutations

Joel Brewster Lewis
University of Minnesota
Joint work with Alejandro Morales (UCLA)

September 20, 2014
The Grassmannian and the positive Grassmannian

The (real) Grassmannian $\text{Gr}_{n,k}$ of k-planes in \mathbb{R}^n, represented by $k \times n$ matrices. Decompose in two ways:

- Nicely, as a union of Schubert cells indexed by Grassmannian permutations w_λ (those with a unique descent)
- Not nicely, as a union of matroidal cells (where we keep track of precisely which maximal minors are 0)

$$\begin{bmatrix}
1 & 0 & 1 & 1 & 0 & -1 \\
0 & 0 & 0 & -1 & 1 & 1
\end{bmatrix}$$
The (real) Grassmannian $\text{Gr}_{n,k}$ of k-planes in \mathbb{R}^n, represented by $k \times n$ matrices. Decompose in two ways:

- Nicely, as a union of *Schubert cells* indexed by *Grassmannian permutations* w_λ (those with a unique descent)
- Not nicely, as a union of *matroidal cells* (where we keep track of precisely which maximal minors are 0)

$$\begin{bmatrix} 1 & 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & -1 & 1 & 1 \end{bmatrix}$$

When we restrict to the *nonnegative Grassmannian* $\text{Gr}_{n,k}^\geq$ of k-planes represented by matrices with nonnegative maximal minors, the second decomposition becomes nice (“positroids”).
Theorem (Postnikov). The positroidal cells in the Schubert cell indexed by the Grassmannian permutation w_λ are in bijection with:

- the regions in the inversion hyperplane arrangement of w_λ;
- the acyclic orientations of the inversion graph of w_λ;
- the nonattacking rook placements avoiding a certain diagram of w_λ;
- the permutations below w_λ in strong Bruhat order;
- etc.
Theorem (Postnikov). The positroidal cells in the Schubert cell indexed by the Grassmannian permutation w_λ are in bijection with:

- the regions in the inversion hyperplane arrangement of w_λ;
- the acyclic orientations of the inversion graph of w_λ;
- the nonattacking rook placements avoiding a certain diagram of w_λ;
- the permutations below w_λ in strong Bruhat order;
- etc.

Our Question. What can we say in the case that $w = w_\lambda$ is not necessarily Grassmannian?
Theorem (Postnikov). The positroidal cells in the Schubert cell indexed by the Grassmannian permutation w_λ are in bijection with:

- the regions in the **inversion hyperplane arrangement** of w_λ;
- the **acyclic orientations** of the **inversion graph** of w_λ;
- the nonattacking **rook placements** avoiding a certain **diagram** of w_λ;
- the permutations below w_λ in strong Bruhat order;
- etc.

Our Question. What can we say in the case that $w = w_\lambda$ is not necessarily Grassmannian?
Observation: cells of the diagram O_w correspond naturally to co-inversions of w
Given $S \subseteq [n] \times [n]$, count placements of nonattacking rooks on S:
For a permutation $w \in S_n$, the inversion arrangement A_w is the collection in \mathbb{R}^n of hyperplanes $x_i - x_j = 0$ for each inversion (i, j) in w:

- $w = 3142$
- inversions: $\{(1, 2), (1, 4), (3, 4)\}$

$$A_{3142} = 8$$

- $w = 3412$
- inversions: $\{(1, 3), (1, 4), (2, 3), (2, 4)\}$

$$A_{3412} = 14$$
For a permutation $w \in S_n$, the inversion arrangement A_w is the collection in \mathbb{R}^n of hyperplanes $x_i - x_j = 0$ for each inversion (i, j) in w.

Classically equivalent: let G_w be the graph on $[n]$ with edge (i, j) for each inversion in w. Then $A_w = \#A_w$ is also the number of acyclic orientations of G_w:

\[G_{3142} \quad \text{and} \quad G_{3412} \]
Our question

Theorem (Postnikov). When w is a Grassmannian permutation, the following objects are in bijection:

- the number of acyclic orientations of the inversion graph of w;
- the nonattacking rook placements avoiding a certain diagram of w;
- the permutations below w in strong Bruhat order;
- the 0, 1-fillings of D_w avoiding certain patterns;
- etc.

Our Question. What can we say in the case that $w = w_\lambda$ is not necessarily Grassmannian?
Theorem 1 (L–Morales 14). For all permutations \(w \), the number of acyclic orientations of the inversion graph of \(w \) is equal to the number of rook placements avoiding the diagram of \(w \).

Proof idea.
Theorem 1 (L–Morales 14). For all permutations w, the number of acyclic orientations of the inversion graph of w is equal to the number of rook placements avoiding the diagram of w.

Proof idea. On rook placements, do or do not place a rook (but must stay in permutation-world); on graphs, deletion-contraction (ditto).
Rook placements and acyclic orientations

Theorem 1 (L–Morales 14). *For all permutations w, the number of acyclic orientations of the inversion graph of w is equal to the number of rook placements avoiding the diagram of w.*

Proof idea. On rook placements, do or do not place a rook (but must stay in permutation-world); on graphs, deletion-contraction (ditto).
Theorem 1 (L–Morales 14). For all permutations w, the number of acyclic orientations of the inversion graph of w is equal to the number of rook placements avoiding the diagram of w.

Proof idea. On rook placements, do or do not place a rook (but must stay in permutation-world); on graphs, deletion-contraction (ditto).

There is also an alternate proof: show that the chromatic polynomial of the inversion graph is equal to a rook polynomial of the diagram using the ideas of Goldman–Joichi–White RT3, then specialize to -1.

(Strong) Bruhat order is defined by cover relations $w < w \cdot (i, j)$ if $\ell(w) + 1 = \ell(w \cdot (i, j))$.

\begin{figure}
\centering
\begin{tikzpicture}
 \node at (0,0) {123};
 \node at (1,1) {213};
 \node at (2,2) {231};
 \node at (1,3) {312};
 \node at (0,4) {321};

 \draw (0,0) -- (1,1);
 \draw (1,1) -- (2,2);
 \draw (2,2) -- (1,3);
 \draw (1,3) -- (0,4);
\end{tikzpicture}
\end{figure}
(Strong) Bruhat order is defined by cover relations \(w < w \cdot (i, j) \) if \(\ell(w) + 1 = \ell(w \cdot (i, j)) \).

Lower interval \([e, w]\) is the set of things below \(w \).
Theorem (Hultman–Linusson–Shareshian–Sjöstrand 08/09; conjectured by Postnikov). *The number of acyclic orientations of the inversion graph of the permutation w is equal to the size $\# [e, w]$ of the lower order ideal of w in strong Bruhat order if and only if w avoids the permutation patterns $4231, 35142, 42513, 351624$.***
Theorem (Hultman–Linusson–Shareshian–Sjöstrand 08/09; conjectured by Postnikov). The number of acyclic orientations of the inversion graph of the permutation w is equal to the size $\#[e, w]$ of the lower order ideal of w in strong Bruhat order if and only if w avoids the permutation patterns $4231, 35142, 42513, 351624$.

Corollary 2 (of this and L–M). Ditto if we replace “acyclic orientations of the inversion graph of w” with “rook placements avoiding the diagram of w.”
Theorem (Hultman–Linusson–Shareshian–Sjöstrand 08/09; conjectured by Postnikov). The number of acyclic orientations of the inversion graph of the permutation w is equal to the size $\# [e, w]$ of the lower order ideal of w in strong Bruhat order if and only if w avoids the permutation patterns 4231, 35142, 42513, 351624.

Corollary 2 (of this and L–M). Ditto if we replace “acyclic orientations of the inversion graph of w” with “rook placements avoiding the diagram of w.”

Remark: there are natural q-analogues of rook placements and sizes of Bruhat intervals
The Poincaré polynomial of w is the rank-generating function for $[e, w]: P_{312}(q) = 1 + 2q + q^2$
Invertible matrices

Rook placements also have a natural q-analogue:

Theorem (L–Liu–Morales–Panova–Sam–Zhang). The number of matrices in $GL_n(F_q)$ avoiding D is a q-analogue* of the number of rook placements avoiding D.

$$4$$ rook placements

$$4$$ invertible matrices

$$(q^2 + 2q + 1)(q - 1)^3 q^3$$ invertible matrices
Theorem (HLSS+LM). The number of rook placements avoiding O_w is equal to $\# [e, w]$ iff w avoids 4231, 35142, 42513, 351624.
The \(q \)-analogue of HLSS

Theorem (HLSS+LM). The number of rook placements avoiding \(O_w \) is equal to \(\#[e, w] \) iff \(w \) avoids 4231, 35142, 42513, 351624.

Theorem 3 (L–Morales). The number \(M_w(q) \) of matrices in \(\text{GL}_n(F_q) \) avoiding \(O_w \) satisfies

\[
M_w(q) = (q - 1)^n q^{\binom{n}{2}} q^{\ell(w)} P_w(q^{-1})
\]

iff \(w \) avoids 4231, 35142, 42513, 351624.

Corollary 4 (LM, independently Linusson–Shareshian). The number \(M_w(q) \) of matrices in \(\text{GL}_n(F_q) \) avoiding \(O_w \) satisfies

\[
M_w(q) = (q - 1)^n q^{\binom{n}{2}} P_w(q)
\]

iff \(w \) is smooth (avoids 4231, 3412).
Theorem (L–Morales). The number $M_w(q)$ of matrices in $GL_n(\mathbb{F}_q)$ avoiding O_w satisfies

$$M_w(q) = (q - 1)^n q^{\binom{n}{2}} q^{\ell(w)} P_w(q^{-1})$$

iff w avoids $4231, 35142, 42513, 351624$.

Proof idea. HLSS show that $\#[e, w]$ obeys certain recurrences when w avoids patterns; these lift to $P_w(q)$. We give related recurrences for matrix counts by considering whether a given entry is 0 or not, and doing elimination. (But life can be complicated)
Final remarks

Corollary: when w avoids patterns, $M_w(q) \in (q - 1)^n \mathbb{N}[q]$. Conjecture: true for all w.
Corollary: when w avoids patterns,
$M_w(q) \in (q - 1)^n \mathbb{N}[q]$. Conjecture: true for all w.

We can also say a little bit about fillings of diagrams.