Matrices with restricted entries and q-analogues of permutations

Joel B. Lewis (MIT)
joint work with
Aaron Klein (Brookline HS), Ricky I. Liu (Michigan),
Alejandro H. Morales (MIT), Greta Panova (UCLA),
Steven V Sam (MIT), Yan X Zhang (MIT)

January 5, 2012
A derangement is a permutation with no fixed points, i.e., a permutation matrix with all diagonal entries 0.
A **derangement** is a permutation with no fixed points, i.e., a permutation matrix with all diagonal entries 0. Here’s a sort of “q-analogue”:

Question 1 (Stanley). How many invertible $n \times n$ matrices are there over the field \mathbb{F}_q with all diagonal entries equal to 0?
A pretty enumerative problem

A derangement is a permutation with no fixed points, i.e., a permutation matrix with all diagonal entries 0. Here’s a sort of “q-analogue”:

Question 1 (Stanley). How many invertible \(n \times n \) matrices are there over the field \(F_q \) with all diagonal entries equal to 0?

For example \((q = 3) \):

\[
\begin{bmatrix}
0 & 0 & 1 \\
1 & 0 & -1 \\
0 & 1 & 0
\end{bmatrix}
\quad \text{yes}
\quad
\begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & -1 \\
1 & 1 & 0
\end{bmatrix}
\quad \text{no}
\quad
\begin{bmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & -1
\end{bmatrix}
\quad \text{no}
\]
Counting invertible matrices with zero diagonal

We can count derangements: build up a permutation entry by entry, get a recursion, guess the answer

\[\sum_{i=0}^{n} (-1)^i \frac{n!}{i!} \]
Counting invertible matrices with zero diagonal

We can count derangements: build up a permutation entry by entry, get a recursion, guess the answer

\[\sum_{i=0}^{n} (-1)^i \frac{n!}{i!} \]

Theorem 1 (LLMPSZ). The number of invertible \(n \times n \) matrices over \(\mathbb{F}_q \) with all diagonal entries equal to 0 is

\[q^{(n-1)/2} (q - 1)^n \sum_{i=0}^{n} (-1)^i \binom{n}{i} [n - i]_q! \]

where \([m]_q! = \prod_{j=1}^{m} (1 + q + \ldots + q^{j-1})\)
Counting invertible matrices with zero diagonal

We can count derangements: build up a permutation entry by entry, get a recursion, guess the answer

\[\sum_{i=0}^{n} \frac{(-1)^i n!}{i!} \]

Theorem 1 (LLMPSZ). *The number of invertible* \(n \times n \) *matrices over* \(\mathbb{F}_q \) *with all diagonal entries equal to 0 is*

\[q^{(n-1) \cdot \left(\frac{n-1}{2} \right)} (q - 1)^n \sum_{i=0}^{n} (-1)^i \binom{n}{i} [n - i]_q! \]

where \([m]_q! = \prod_{j=1}^{m} (1 + q + \ldots + q^{j-1})\)

Observations:

- a *q*-analogue of the number of derangements of length *n*
Counting invertible matrices with zero diagonal

We can count derangements: build up a permutation entry by entry, get a recursion, guess the answer:

\[\sum_{i=0}^{n} (-1)^i \frac{n!}{i!} \]

Theorem 1 (LLMPSZ). *The number of invertible* \(n \times n \) *matrices over* \(\mathbb{F}_q \) *with all diagonal entries equal to 0 is*

\[q^{(n-1)(n-2)}(q - 1)^n \sum_{i=0}^{n} (-1)^i \binom{n}{i} [n - i]_q! \]

where \([m]_q! = \prod_{j=1}^{m} (1 + q + \ldots + q^{j-1}) \)

Observations:
- a \(q \)-analogue of the number of derangements of length \(n \)
- a polynomial in \(q \)
Introduction

q-analogues

- Enumerative q-analogues
- Examples

Polynomiality

Final thoughts
Enumerative q-analogues

- Fix q and n
- S is a set of minors of the $n \times n$ grid
- $\text{mat}(n, S; q)$ is the number of $n \times n$ invertible matrices over \mathbb{F}_q such that all minors indicated by S are equal to 0
- $P(n, S)$ is the number of $n \times n$ permutation matrices such that all minors indicated by S are equal to 0
Enumerative q-analogues

- Fix q and n
- S is a set of minors of the $n \times n$ grid
- $\text{mat}(n, S; q)$ is the number of $n \times n$ invertible matrices over \mathbb{F}_q such that all minors indicated by S are equal to 0
- $P(n, S)$ is the number of $n \times n$ permutation matrices such that all minors indicated by S are equal to 0

Theorem 2 (LLMPSZ). For fixed q, n, S, we have

$$\text{mat}(n, S; q) \equiv (q - 1)^nP(n, S) \pmod{(q - 1)^{n+1}}.$$

(Note that this mod operation is as integers, not as polynomials.)
Examples

- $\text{mat}(n, S; q)$ is the number of $n \times n$ invertible matrices over \mathbb{F}_q such that all minors indicated by S are equal to 0.

Example 1. Given if S is has only 1×1 minors (a diagram), $\text{mat}(n, S; q)$ is a q-analogue of permutations with restricted values. (We’ll use D instead of S for examples of this case.)
Examples

- $\text{mat}(n, S; q)$ is the number of $n \times n$ invertible matrices over \mathbb{F}_q such that all minors indicated by S are equal to 0.

Example 1. Given if S is has only 1×1 minors (a diagram), $\text{mat}(n, S; q)$ is a q-analogue of permutations with restricted values. (We’ll use D instead of S for examples of this case.)

Example 2. When $S = \{\{1\} \times \{1\}, \{1, 2\} \times \{1, 2\}, \ldots, \{1, \ldots, n - 1\} \times \{1, \ldots, n - 1\}\}$ then $\text{mat}(n, S; q)$ is a q-analogue of indecomposable permutations, i.e., those that don’t fix $\{1, \ldots, k\}$ for any k.

Polynomiality

- Are our q-analogues polynomials?
- Young shapes
- Permutation diagrams
- Pattern avoidance

Final thoughts
Are our q-analogues polynomials?

Recall Theorem 2:

Theorem (LLMPSZ). For fixed q, n, S, we have

$$\text{mat}(n, S; q) \equiv (q - 1)^n P(n, S) \pmod{(q - 1)^{n+1}}.$$

Question 2. This says nothing about the nature of the function $\text{mat}(n, S; q)$ for fixed n, S. Is it a polynomial?
Are our \(q \)-analogues polynomials?

Recall Theorem 2:

Theorem (LLMPSZ). For fixed \(q, n, S \), we have

\[
\text{mat}(n, S; q) \equiv (q - 1)^n P(n, S) \pmod{(q - 1)^{n+1}}.
\]

Question 2. This says nothing about the nature of the function \(\text{mat}(n, S; q) \) for fixed \(n, S \). Is it a polynomial?

Answer: no, even if we restrict to \(1 \times 1 \) minors (Stembridge).
Are our q-analogues polynomials?

Recall Theorem 2:

Theorem (LLMPSZ). For fixed q, n, S, we have

$$\mat(n, S; q) \equiv (q - 1)^n P(n, S) \pmod{(q - 1)^{n+1}}.$$

Question 2. This says nothing about the nature of the function $\mat(n, S; q)$ for fixed n, S. Is it a polynomial?

Answer: no, even if we restrict to 1×1 minors (Stembridge). However, in some special cases there may be things to be done!
Young shapes

Theorem (Haglund). If D is (the complement of) a Young diagram then $\text{mat}(n, D; q)$ is a polynomial in q. In particular, it counts permutation matrices with no 1s in D by number of inversions.
Young shapes

Theorem (Haglund). *If* D *is (the complement of) a Young diagram then* $\text{mat}(n, D; q)$ *is a polynomial in* q. *In particular, it counts permutation matrices with no 1s in* D *by number of inversions.*

Theorem 3 (Klein, L., Morales). *If* D *is the complement of a skew Young diagram, ditto.*

\[
\begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]
Permutation diagrams

The *Rothe diagram* of a permutation is what you get by throwing away all the hooks with vertices at the entries of the permutation matrix:
Permutation diagrams

The *Rothe diagram* of a permutation is what you get by throwing away all the hooks with vertices at the entries of the permutation matrix:

\[
\begin{bmatrix}
\star \\
\star \\
\star \\
\star \\
\end{bmatrix}
\]

31254 \rightarrow
The *Rothe diagram* of a permutation is what you get by throwing away all the hooks with vertices at the entries of the permutation matrix:

\[
31254 \rightarrow \begin{bmatrix}
* \\
* \\
* \\
* \\
*
\end{bmatrix}
\]
Permutation diagrams

The Rothe diagram of a permutation is what you get by throwing away all the hooks with vertices at the entries of the permutation matrix:

$$31254 \rightarrow \begin{bmatrix}
* & * & * \\
* & * \\
* & * \\
* & *
\end{bmatrix}$$
Permutation diagrams

The *Rothe diagram* of a permutation is what you get by throwing away all the hooks with vertices at the entries of the permutation matrix:

\[
31254 \rightarrow \begin{bmatrix}
* & * & * \\
* & * \\
* & * \\
* & * \\
\end{bmatrix}
\]
The *Rothe diagram* of a permutation is what you get by throwing away all the hooks with vertices at the entries of the permutation matrix:

\[
\begin{array}{cccc}
\ast & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast & \ast \\
\ast & \ast & \ast & & \\
\ast & \ast & & & \\
\ast & \ast & & \\
\end{array}
\]

31254 →
The *Rothe diagram* of a permutation is what you get by throwing away all the hooks with vertices at the entries of the permutation matrix:

\[31254 \rightarrow \begin{bmatrix}
 * & * & * \\
 * & * & * & * \\
 * & * & * \\
 * & * & * \\
 * & * & *
\end{bmatrix} \]
The *Rothe diagram* of a permutation is what you get by throwing away all the hooks with vertices at the entries of the permutation matrix:

\[
31254 \rightarrow \begin{bmatrix}
\ast & \ast & \ast \\
\ast & \ast & \ast & \ast \\
\ast & \ast & \ast \\
\ast & \ast & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast & \ast
\end{bmatrix}
\]
Permutation diagrams

The Rothe diagram of a permutation is what you get by throwing away all the hooks with vertices at the entries of the permutation matrix:

\[
\begin{bmatrix}
\star & \star & \star \\
\star & \star & \star & \star \\
\star & \star & \star \\
\star & \star \\
\star & \star & \star \\
\end{bmatrix}
\]

31254 →
The Rothe diagram of a permutation is what you get by throwing away all the hooks with vertices at the entries of the permutation matrix:

\[
\begin{pmatrix}
* & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * & * \\
\end{pmatrix}
\]

31254 →
The *Rothe diagram* of a permutation is what you get by throwing away all the hooks with vertices at the entries of the permutation matrix:

\[
31254 \rightarrow \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}
\]
Permutation diagrams

The Rothe diagram of a permutation is what you get by throwing away all the hooks with vertices at the entries of the permutation matrix:

$$31254 \rightarrow \begin{bmatrix} 0 & 0 \\ 0 & \end{bmatrix}$$

Question 3 (Postnikov). What can we say about \(\text{mat}(n, D_w; q)\) where \(D_w\) is the diagram of a permutation \(w\)?
Permutation diagrams and pattern avoidance

A permutation $w = w_1 \cdots w_n$ *avoids* a permutation $p = p_1 \cdots p_\ell$ if there is no sequence $1 \leq i_1 < \ldots < i_\ell \leq n$ such that $w_{i_j} < w_{i_k}$ whenever $p_j < p_k$.
A permutation $w = w_1 \cdots w_n$ avoids a permutation $p = p_1 \cdots p_\ell$ if there is no sequence $1 \leq i_1 < \ldots < i_\ell \leq n$ such that $w_{i_j} < w_{i_k}$ whenever $p_j < p_k$.

- 31524 does not avoid 2143 because of 31524
A permutation $w = w_1 \cdots w_n$ avoids a permutation $p = p_1 \cdots p_\ell$ if there is no sequence $1 \leq i_1 < \ldots < i_\ell \leq n$ such that $w_{i_j} < w_{i_k}$ whenever $p_j < p_k$.

- 31524 does not avoid 2143 because of 31524
- 35124 avoids 2143
A permutation \(w = w_1 \cdots w_n \) avoids a permutation \(p = p_1 \cdots p_\ell \) if there is no sequence \(1 \leq i_1 < \ldots < i_\ell \leq n \) such that \(w_{i_j} < w_{i_k} \) whenever \(p_j < p_k \).

Theorem (Lascoux, Schützenberger). The diagram \(D_w \) of \(w \) can be rearranged by row and column swaps to give a Young diagram if and only if \(w \) avoids the permutation pattern 2143.

Consequently (by Haglund’s result), if \(w \in \mathfrak{S}_n \) avoids 2143 then \(\text{mat}(n, D_w; q) \) is a polynomial in \(q \).
A permutation $w = w_1 \cdots w_n$ avoids a permutation $p = p_1 \cdots p_\ell$ if there is no sequence $1 \leq i_1 < \ldots < i_\ell \leq n$ such that $w_{i_j} < w_{i_k}$ whenever $p_j < p_k$.

Theorem (Lascoux, Schützenberger). The diagram D_w of w can be rearranged by row and column swaps to give a Young diagram if and only if w avoids the permutation pattern 2143.

Theorem 4 (Klein, L., Morales). The diagram D_w of w can be rearranged by row and column swaps to give the complement of a skew Young diagram if and only if w avoids the nine patterns 24153, 25143, 31524, 31542, 32514, 32541, 42153, 52143, and 214365.

Consequently (by the previous KLM result), if $w \in \mathfrak{S}_n$ avoids these nine patterns then $\text{mat}(n, D_w; q)$ is a polynomial in q.
A permutation \(w = w_1 \cdots w_n \) avoids a permutation \(p = p_1 \cdots p_\ell \) if there is no sequence \(1 \leq i_1 < \ldots < i_\ell \leq n \) such that \(w_{i_j} < w_{i_k} \) whenever \(p_j < p_k \).

Theorem (Lascoux, Schützenberger). The diagram \(D_w \) of \(w \) can be rearranged by row and column swaps to give a Young diagram if and only if \(w \) avoids the permutation pattern 2143.

Theorem 4 (Klein, L., Morales). The diagram \(D_w \) of \(w \) can be rearranged by row and column swaps to give the complement of a skew Young diagram if and only if \(w \) avoids the nine patterns 24153, 25143, 31524, 31542, 32514, 32541, 42153, 52143, and 214365.

Conjecture 1. For any fixed \(n, w \in \mathfrak{S}_n \), we have \(\text{mat}(n, D_w; q) \) is a polynomial in \(q \).
Final thoughts
Final thoughts