## Homework 1: tempered distribution and Fourier transform

Due: Oct 22 in class
Problem 1: Calculate the Fourier transform of the following functions $f$ on $\mathbb{R}$, considered as tempered distributions: denote $\mathbf{1}_{x>0}$ as the function equation to 1 for $x>0$ and 0 for $x \leq 0$, let
(1) $f(x)=\mathbf{1}_{x>0}$;
(2) $f(x)=x \mathbf{1}_{x>0}$;

$$
\begin{align*}
& f(x)=\sin x  \tag{3}\\
& f(x)=x^{2} \sin x \tag{4}
\end{align*}
$$

Problem 2: Define the convolution of a tempered distribution $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ with a Schwartz function $\Phi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ as the function $f * \Phi$ with

$$
f * \Phi(x)=f(\Phi(x-\cdot)),
$$

where the function $\Phi(x-\cdot)$ is defined as

$$
\Phi(x-\cdot)(y)=\Phi(x-y) .
$$

Show that $f * \Phi \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ and that

$$
\widehat{f * \Phi}(\xi)=\widehat{f}(\xi) \widehat{g}(\xi) .
$$

Problem 3: In $\mathbb{R}^{2}$, calculate the Fourier transform of

$$
\log |x|
$$

Hint: note the connection with the fundamental solution to Laplace equation in two dimensions.

Problem 4: Solution to the Beltrami equation. In this exercise, you are asked to outline the main steps to solve the Beltrami equation

$$
\begin{equation*}
\partial_{\bar{z}} f=\mu(x, y) \partial_{z} f, \tag{1}
\end{equation*}
$$

where $\mu \in \mathcal{S}\left(\mathbb{R}^{2}\right)$ with $\|\mu\|_{L^{\infty}}<1$, and

$$
z=x+i y, \quad \bar{z}=x-i y, \quad \partial_{\bar{z}}=\frac{1}{2}\left(\partial_{x}+i \partial_{y}\right), \quad \partial_{z}=\frac{1}{2}\left(\partial_{x}-i \partial_{y}\right) .
$$

Step 1 Find the solution to

$$
\begin{equation*}
\partial_{\bar{z}} u=g, \tag{2}
\end{equation*}
$$

for any $g \in \mathcal{S}\left(\mathbb{R}^{2}\right)$. Denote the solution $u$ as $u=C(g)$.
Step 2 Find the expression of the operator $T$

$$
\begin{equation*}
T: \partial_{\bar{z}} g \rightarrow \partial_{z} g \tag{3}
\end{equation*}
$$

for any $g \in \mathcal{S}\left(\mathbb{R}^{2}\right)$, in terms of Fourier transforms. In other words, find the Fourier multiplier $m(\xi)$ so that

$$
\widehat{T h}(\xi)=m(\xi) \widehat{h}(\xi)
$$

and that (3) holds. Show also that $T: L^{2}\left(\mathbb{R}^{2}\right) \rightarrow L^{2}\left(\mathbb{R}^{2}\right)$ is bounded with

$$
\|T\|=1
$$

Step 3 Now solve solution $f$ to (1) in the form of

$$
f=z+h
$$

where $h$ satisfies

$$
\begin{equation*}
\partial_{\bar{z}} h-\mu T \partial_{\bar{z}} h=\mu . \tag{4}
\end{equation*}
$$

Show by contraction mapping theorem in $L^{2}$ that equation (4) has a unique solution $\partial_{\bar{z}} h \in L^{2}$.
Step $4 h$ can then be recovered from $\partial_{\bar{z}} h$ using the operator $C$.
Cross-reference: read the wiki page on Beltrami equation to see the connection to metric on the plane.

