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In the nineteenth century, many mathematicians held the belief that a continuous function
must be differentiable at a large set of points. In 1872, Karl Weierstrass shocked the mathe-
matical world by giving the first published example of a continuous function that is nowhere
differentiable. His function is given by

W(z) = Z a" cos(b"mx).
n=0

In particular, Weierstrass proved the following theorem:

Theorem 1 (Weierstrass 1872). Let a € (0,1), let b > 1 be an odd integer, and assume that
3

Then the function W is continuous and nowhere differentiable on R.

To see that W is continuous on R, note that
la™ cos(b"'mx)| = a"| cos(b"mx)| < a™.

Since the geometric series ) a" converges for a € (0,1), the Weierstrass M-test shows that
the series defining W converges uniformly to W on R. Since each function a™ cos(b"wx) is
continuous, each partial sum is continuous, and therefore W is continuous, being the uniform
limit of a sequence of continuous functions.

To give some motivation for the condition (1), consider the partial sums

n

Wh(z) = Z a® cos(b*nz).

k=0

These partial sums are differentiable functions and

W) (z) = — Z 7(ab)® sin(b*nz).
k=0

If ab < 1, then we can again use the Weierstrass M-test to show that (W) converges uniformly
to a continuous function on R. In this case we can actually prove that W is differentiable
and W) — W' uniformly. Therefore, at the very least we need ab > 1 for W to be non-
differentiable. In 1916, Godfrey Hardy showed that ab > 1 is sufficient for the nowhere



Figure 1: The Weierstrass function W (z) for a = 0.5 and b = 3. Notice that W appears the
same on the two different scales shown in (a) and (b).

differentiability of W. The more restrictive condition ab > 1 + %77 present in Weierstrass’s
proof is an artifact of the techniques he used. Hardy also relaxed the integral assumption on
b, and allowed b to be any real number greater than 1.

Figure 1 shows a plot of the Weierstrass function for a = 0.5 and b = 3 on two different
scales. Notice the similar repeating patterns on each scale. If we were to continue zooming
in on W, we would continue seeing the same patterns. The Weierstrass function is an early
example of a fractal, which has repeating patterns at every scale.

Before giving the proof, we recall a few facts that will be useful in the proof. Let x,y € R,
and suppose x > y. Then by the fundamental theorem of calculus

cos(x) — cos(y) = / —sin(t) dt < / ldt =z —y,
y y

and
cos(z) — cos —1dt = —(xz —y).
( ) (y) Z/y t ( y)

Therefore
| cos(z) — cos(y)| < |z —yl.

The argument is similar when y > x, so we deduce
|cos(x) — cos(y)| < |z —y| forall z,y € R. (2)

Consider cos(nm + ) for an integer n and x € R. If n is even, then since cosine is 27-periodic,
cos(nm + x) = cos(x). If n is odd, then n + 1 is even and

cos(nm + x) = cos((n+ )7+ — m) = cos(x — m) = — cos(x).
Draw a graph of cos(z) if the last equality is unclear. Therefore we obtain
cos(nm + x) = (—1)" cos(z) for all z € R. (3)

We now give the proof of Theorem 1.



Proof. Let xg € R and let m € N. Let us round d™xg to the nearest integer, and call this
integer k,,. Therefore

1 1
Let us also set P
rp =L (5)

By (4) we see that

Tm = T m b
and
| 3
Im S T T
Combining these equations we have
3
x0<xm§xo+2b—m. (6)

By the squeeze lemma, limy, o0 T = Xp.
Let us consider the difference

W(xm) — W(xo) = Z a" cos(b" ) — Z a" cos(b" o)
n=0 n=0

= 3 a" (cos(bmz) — cos(b 7))

n=0
—A+B, 7
where .
A= Z a" (cos(b"mxy,) — cos(b"mxg)) , (8)
n=0
and -
B = Z a” (cos(b"may,) — cos(b™mxy)) . (9)

The proof is now split into three steps.
1. The first step is to find an upper bound for |A|. Using the triangle inequality and the
identity (2)

m—1 m—1 m—1
|A] < Z a" |cos(b""mxy,) — cos(b"mxg)| < Z a"b"m(xp — xo) = T(Tm — o) Z(ab)”.
n=0 n=0 n=0

Noticing the geometric series, we deduce

1 — (ab)™
< — - 7 = —
|A| < 7(zp — x0) T ab (T — )

(ab)™ —1 < m(ab)™
ab—1 — ab—-1

(Tm — o). (10)

In the last step we used the hypothesis that ab > 1 + %7‘(’ > 1.



2. The second step is to find a lower bound for |B|. By the definition of z,, (5)

km +1 _
cos(b"may,) = cos (bnw ( b:: >> = cos(b"" " (kpm + 1)7).

For n > m, b"~"(k,, + 1) is an integer, and hence
n—m n—m km+1
cos(B" ) = (1) = ()T )T = ()fe = (R (1)

where we used the fact that b"~™ is odd so that (—1)*""" = —1. On the other hand, we also

have L o L
cos(b"mxy) = cos (b”ﬂ < mt b:fo — m>> = cos(b" "k + 0" " 2y, ),

where 2, = b™xy — ky,. Since n > m, b" ™k, is an integer and we can use (3) to find that

cos(B"rxg) = (—1)" " Em cos(b Mz, m) = (—1)Fm cos(B ™z T), (12)

where, as before, we used the fact that 4"~ is odd. We now insert (11) and (12) into (9) to
obtain

B = f: a” (—(—1)km — (=1)km cos(b”_mzmw))

n=m

o0
1)km Z a® (1+ cos(b" "zpm)) .

n=m
Notice that a™ > 0 and 1+ cos(b" ™z, m) > 0. It follows that all the terms in the sum above
are non-negative, and therefore

oo
|B| = Z a” (14 cos(b" ™zpm)) = a™ (1 4 cos(zmm)) .
n=m
Recall that z, = b™zg — ky,. By (4), 2 € [—3, 3], and therefore 7wz, € [-3,2]. It follows
that cos(zy,m) > 0 and
|B| > a™.

By (6), 2y — x0 < and thus

s
20m
3
We can combine this with |B| > a™ to find that
2(ab)™
3

This is the desired lower bound on |B|, and completes part 2 of the proof.
3. We now combine the bounds (10) and (13) to complete the proof. Notice by (10), (13)
and the reverse triangle inequality that

(xm — x0) < 1.

|IB| >a™-1> (Tm — o). (13)

44812 5= 412 20 0 = 0) = T =) = () (5 = 57 ) (o)




By (7) we see that

s

W (o)~ W (ao)| = 14+ B1 2 (@™ (2 = =75 ) (o — o)

Since x,, — xg > 0, so that |z, — zo| = xm — zo, we have

> (ab)™ (?, -t 1> . (14)

We would like this difference quotient to tend to oo in absolute value as m — oo. For this we
need ab > 1 and

W () — W(xo)

Tm — X0

2 us
- — > 0.
3 ab—-1
Rearranging this for ab we see that we need
3
ab > §7T + 1,

which is exactly the hypothesis (1). Therefore

W(:L“m) — W(SUQ)

lim = 400,
m—00 J,‘m _— ,CUO
and x,, — g as m — o0o. This shows that W is not differentiable at xg. ]

With slight modifications to the proof, we can also show that

i W) = W(ao)

T—T0 T — X0

does not exist as a real number or +oco. This rules out the possibility of the Weierstrass
function having a vertical tangent line, or an “infinite derivative” anywhere.



