
Weierstrass’s non-differentiable function

Jeff Calder

December 12, 2014

In the nineteenth century, many mathematicians held the belief that a continuous function
must be differentiable at a large set of points. In 1872, Karl Weierstrass shocked the mathe-
matical world by giving the first published example of a continuous function that is nowhere
differentiable. His function is given by

W (x) =
∞∑
n=0

an cos(bnπx).

In particular, Weierstrass proved the following theorem:

Theorem 1 (Weierstrass 1872). Let a ∈ (0, 1), let b > 1 be an odd integer, and assume that

ab > 1 +
3

2
π. (1)

Then the function W is continuous and nowhere differentiable on R.

To see that W is continuous on R, note that

|an cos(bnπx)| = an| cos(bnπx)| ≤ an.

Since the geometric series
∑
an converges for a ∈ (0, 1), the Weierstrass M-test shows that

the series defining W converges uniformly to W on R. Since each function an cos(bnπx) is
continuous, each partial sum is continuous, and therefore W is continuous, being the uniform
limit of a sequence of continuous functions.

To give some motivation for the condition (1), consider the partial sums

Wn(x) =

n∑
k=0

ak cos(bkπx).

These partial sums are differentiable functions and

W ′n(x) = −
n∑
k=0

π(ab)k sin(bkπx).

If ab < 1, then we can again use the Weierstrass M-test to show that (W ′n) converges uniformly
to a continuous function on R. In this case we can actually prove that W is differentiable
and W ′n → W ′ uniformly. Therefore, at the very least we need ab ≥ 1 for W to be non-
differentiable. In 1916, Godfrey Hardy showed that ab ≥ 1 is sufficient for the nowhere
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Figure 1: The Weierstrass function W (x) for a = 0.5 and b = 3. Notice that W appears the
same on the two different scales shown in (a) and (b).

differentiability of W . The more restrictive condition ab > 1 + 3
2π present in Weierstrass’s

proof is an artifact of the techniques he used. Hardy also relaxed the integral assumption on
b, and allowed b to be any real number greater than 1.

Figure 1 shows a plot of the Weierstrass function for a = 0.5 and b = 3 on two different
scales. Notice the similar repeating patterns on each scale. If we were to continue zooming
in on W , we would continue seeing the same patterns. The Weierstrass function is an early
example of a fractal, which has repeating patterns at every scale.

Before giving the proof, we recall a few facts that will be useful in the proof. Let x, y ∈ R,
and suppose x > y. Then by the fundamental theorem of calculus

cos(x)− cos(y) =

∫ x

y
− sin(t) dt ≤

∫ x

y
1 dt = x− y,

and
cos(x)− cos(y) ≥

∫ x

y
−1 dt = −(x− y).

Therefore
| cos(x)− cos(y)| ≤ |x− y|.

The argument is similar when y ≥ x, so we deduce

| cos(x)− cos(y)| ≤ |x− y| for all x, y ∈ R. (2)

Consider cos(nπ+x) for an integer n and x ∈ R. If n is even, then since cosine is 2π-periodic,
cos(nπ + x) = cos(x). If n is odd, then n+ 1 is even and

cos(nπ + x) = cos((n+ 1)π + x− π) = cos(x− π) = − cos(x).

Draw a graph of cos(x) if the last equality is unclear. Therefore we obtain

cos(nπ + x) = (−1)n cos(x) for all x ∈ R. (3)

We now give the proof of Theorem 1.
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Proof. Let x0 ∈ R and let m ∈ N. Let us round bmx0 to the nearest integer, and call this
integer km. Therefore

bmx0 −
1

2
≤ km ≤ bmx0 +

1

2
. (4)

Let us also set
xm =

km + 1

bm
. (5)

By (4) we see that

xm ≥
bmx0 − 1

2 + 1

bm
>
bmx0
bm

= x0,

and

xm ≤
bmx0 +

1
2 + 1

bm
= x0 +

3

2bm
.

Combining these equations we have

x0 < xm ≤ x0 +
3

2bm
. (6)

By the squeeze lemma, limm→∞ xm = x0.
Let us consider the difference

W (xm)−W (x0) =

∞∑
n=0

an cos(bnπxm)−
∞∑
n=0

an cos(bnπx0)

=
∞∑
n=0

an (cos(bnπxm)− cos(bnπx0))

= A+B, (7)

where

A =

m−1∑
n=0

an (cos(bnπxm)− cos(bnπx0)) , (8)

and

B =

∞∑
n=m

an (cos(bnπxm)− cos(bnπx0)) . (9)

The proof is now split into three steps.
1. The first step is to find an upper bound for |A|. Using the triangle inequality and the

identity (2)

|A| ≤
m−1∑
n=0

an |cos(bnπxm)− cos(bnπx0)| ≤
m−1∑
n=0

anbnπ(xm − x0) = π(xm − x0)
m−1∑
n=0

(ab)n.

Noticing the geometric series, we deduce

|A| ≤ π(xm − x0)
1− (ab)m

1− ab
= π(xm − x0)

(ab)m − 1

ab− 1
≤ π(ab)m

ab− 1
(xm − x0). (10)

In the last step we used the hypothesis that ab > 1 + 3
2π > 1.
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2. The second step is to find a lower bound for |B|. By the definition of xm (5)

cos(bnπxm) = cos

(
bnπ

(
km + 1

bm

))
= cos(bn−m(km + 1)π).

For n ≥ m, bn−m(km + 1) is an integer, and hence

cos(bnπxm) = (−1)bn−m(km+1) =
(
(−1)bn−m

)km+1
= (−1)km+1 = −(−1)km , (11)

where we used the fact that bn−m is odd so that (−1)bn−m
= −1. On the other hand, we also

have
cos(bnπx0) = cos

(
bnπ

(
km + bmx0 − km

bm

))
= cos(bn−mkmπ + bn−mzmπ),

where zm = bmx0 − km. Since n ≥ m, bn−mkm is an integer and we can use (3) to find that

cos(bnπx0) = (−1)bn−mkm cos(bn−mzmπ) = (−1)km cos(bn−mzmπ), (12)

where, as before, we used the fact that bn−m is odd. We now insert (11) and (12) into (9) to
obtain

B =

∞∑
n=m

an
(
−(−1)km − (−1)km cos(bn−mzmπ)

)
= −(−1)km

∞∑
n=m

an
(
1 + cos(bn−mzmπ)

)
.

Notice that an > 0 and 1 + cos(bn−mzmπ) ≥ 0. It follows that all the terms in the sum above
are non-negative, and therefore

|B| =
∞∑
n=m

an
(
1 + cos(bn−mzmπ)

)
≥ am (1 + cos(zmπ)) .

Recall that zm = bmx0 − km. By (4), zm ∈ [−1
2 ,

1
2 ], and therefore πzm ∈ [−π

2 ,
π
2 ]. It follows

that cos(zmπ) ≥ 0 and
|B| ≥ am.

By (6), xm − x0 ≤ 3
2bm , and thus

2bm

3
(xm − x0) ≤ 1.

We can combine this with |B| ≥ am to find that

|B| ≥ am · 1 ≥ 2(ab)m

3
(xm − x0). (13)

This is the desired lower bound on |B|, and completes part 2 of the proof.
3. We now combine the bounds (10) and (13) to complete the proof. Notice by (10), (13)

and the reverse triangle inequality that

|A+B| ≥ |B| − |A| ≥ 2(ab)m

3
(xm−x0)−

π(ab)m

ab− 1
(xm−x0) = (ab)m

(
2

3
− π

ab− 1

)
(xm−x0).
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By (7) we see that

|W (xm)−W (x0)| = |A+B| ≥ (ab)m
(
2

3
− π

ab− 1

)
(xm − x0).

Since xm − x0 > 0, so that |xm − x0| = xm − x0, we have∣∣∣∣W (xm)−W (x0)

xm − x0

∣∣∣∣ ≥ (ab)m
(
2

3
− π

ab− 1

)
. (14)

We would like this difference quotient to tend to ∞ in absolute value as m→∞. For this we
need ab > 1 and

2

3
− π

ab− 1
> 0.

Rearranging this for ab we see that we need

ab >
3

2
π + 1,

which is exactly the hypothesis (1). Therefore

lim
m→∞

∣∣∣∣W (xm)−W (x0)

xm − x0

∣∣∣∣ = +∞,

and xm → x0 as m→∞. This shows that W is not differentiable at x0.

With slight modifications to the proof, we can also show that

lim
x→x0

W (x)−W (x0)

x− x0

does not exist as a real number or ±∞. This rules out the possibility of the Weierstrass
function having a vertical tangent line, or an “infinite derivative” anywhere.
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