
Math 1272: Calculus II
Introduction

Instructor: Jeff Calder
Office: 538 Vincent

Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/1272S19
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Overview

In Calculus I (1271), you learned about the derivative

y′(x) =
dy

dx
= lim

h→0

y(x+ h)− y(x)
h

,

the integral

(Indefinite)
∫
y(x) dx and (Definite)

∫ b

a
y(x) dx,

and the Fundamental Theorem of Calculus:

•
∫
f ′(x) dx = f(x) + Constant

• d
dx

∫ x
a f(x) dx = f(x)

•
∫ b
a f
′(x) dx = f(b)− f(a).
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4. Beginning introduction to vector calculus:

x · y = ‖x‖‖y‖ cos θ and x× y = ‖x‖‖y‖ sin θn.



Differential equations

Differential equations are equations of the form

(First order) F (y′(x), y(x), x) = 0.

(Second order) F (y′′(x), y′(x), y(x), x) = 0.

The unknown is the function y(x).



Differential equations

Differential equations are equations of the form

(First order) F (y′(x), y(x), x) = 0.

(Second order) F (y′′(x), y′(x), y(x), x) = 0.

The unknown is the function y(x).

For example

• (Simple Harmonic Oscillator) x′′(t) + k
mx(t) = 0.

• (Electric circuit) Ri(t) + Li′(t) = V

• Predator-prey (Lotka-Volterra) equations

x′(t) = αx(t)− βx(t)y(t) and y′(t) = δx(t)y(t)− γy(t).



Differential equations

Differential equations are ubiquituous in physics, largely due to Newton’s Law

F︸︷︷︸
Force

= m× a.︸ ︷︷ ︸
Mass×Acceleration

Claim: Newton’s Law is a differential equation in disguise!
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Minimal surfaces (https://www.soapbubble.dk/)
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Minimal surfaces

A soap bubble takes the shape with the least surface area.

For a surface of revolution with height y(x) over the x-axis, y satisfies

c2y(x)2 − y′(x)2 = 1.

The solution is a catenoid

y(x) =
ecx + e−cx

2c

Soap bubble videos:

• https://www.youtube.com/watch?v=3QgHxnDsrGQ?

• https://www.youtube.com/watch?v=ciciWBz8m_Y

https://www.youtube.com/watch?v=3QgHxnDsrGQ?
https://www.youtube.com/watch?v=ciciWBz8m_Y


Brachistochrone curve

Question: What is the shortest path for a rolling ball?

Brachistochrone demo:

• https://www.youtube.com/watch?v=OKjUqPps8vM

https://www.youtube.com/watch?v=OKjUqPps8vM


Brachistochrone curve

The Brachistochrone curve (x, y(x)) satisfies the differential equation

y(x) + y(x)y′(x)2 = C.

The solution is a cycloid (https://en.wikipedia.org/wiki/Cycloid):

https://en.wikipedia.org/wiki/Cycloid

