Math 1272: Calculus II Introduction

Instructor: Jeff Calder
Office: 538 Vincent
Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/1272S19

Overview

In Calculus I (1271), you learned about the derivative

$$
y^{\prime}(x)=\frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{y(x+h)-y(x)}{h},
$$

the integral

$$
\text { (Indefinite) } \int y(x) d x \text { and (Definite) } \int_{a}^{b} y(x) d x
$$

and the Fundamental Theorem of Calculus:

- $\int f^{\prime}(x) d x=f(x)+$ Constant
- $\frac{d}{d x} \int_{a}^{x} f(x) d x=f(x)$
- $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$.

Overview

In 1272, we will roughly cover:

1. Integrating really complicated functions:

$$
\int \frac{\sec ^{2} x}{\tan ^{2} x+3 \tan x+2} d x
$$

Overview

In 1272 , we will roughly cover:

1. Integrating really complicated functions:

$$
\int \frac{\sec ^{2} x}{\tan ^{2} x+3 \tan x+2} d x
$$

2. Use integration techniques to solve differential equations:

- (Linear) $y^{\prime \prime}(x)+y^{\prime}(x)+y(x)=e^{x}$
- (Nonlinear) $y^{\prime}(x)^{2}+y(x) y^{\prime \prime}(x)=\sin (x)$.

Overview

In 1272, we will roughly cover:

1. Integrating really complicated functions:

$$
\int \frac{\sec ^{2} x}{\tan ^{2} x+3 \tan x+2} d x
$$

2. Use integration techniques to solve differential equations:

- (Linear) $y^{\prime \prime}(x)+y^{\prime}(x)+y(x)=e^{x}$
- (Nonlinear) $y^{\prime}(x)^{2}+y(x) y^{\prime \prime}(x)=\sin (x)$.

3. Sequences and series

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}
$$

Overview

In 1272 , we will roughly cover:

1. Integrating really complicated functions:

$$
\int \frac{\sec ^{2} x}{\tan ^{2} x+3 \tan x+2} d x
$$

2. Use integration techniques to solve differential equations:

- (Linear) $y^{\prime \prime}(x)+y^{\prime}(x)+y(x)=e^{x}$
- (Nonlinear) $y^{\prime}(x)^{2}+y(x) y^{\prime \prime}(x)=\sin (x)$.

3. Sequences and series

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}
$$

4. Beginning introduction to vector calculus:

$$
\mathbf{x} \cdot \mathbf{y}=\|\mathbf{x}\|\|\mathbf{y}\| \cos \theta \quad \text { and } \mathbf{x} \times \mathbf{y}=\|\mathbf{x}\|\|\mathbf{y}\| \sin \theta \mathbf{n} .
$$

Differential equations

Differential equations are equations of the form

> (First order) $F\left(y^{\prime}(x), y(x), x\right)=0$
> (Second order) $F\left(y^{\prime \prime}(x), y^{\prime}(x), y(x), x\right)=0$.

The unknown is the function $y(x)$.

Differential equations

Differential equations are equations of the form
(First order) $F\left(y^{\prime}(x), y(x), x\right)=0$.

$$
\text { (Second order) } F\left(y^{\prime \prime}(x), y^{\prime}(x), y(x), x\right)=0
$$

The unknown is the function $y(x)$.

For example

- (Simple Harmonic Oscillator) $x^{\prime \prime}(t)+\frac{k}{m} x(t)=0$.
- (Electric circuit) $R i(t)+L i^{\prime}(t)=V$
- Predator-prey (Lotka-Volterra) equations

$$
x^{\prime}(t)=\alpha x(t)-\beta x(t) y(t) \quad \text { and } \quad y^{\prime}(t)=\delta x(t) y(t)-\gamma y(t)
$$

Differential equations
Differential equations are ubiquituous in physics, largely due to Newton's Law

$$
\underbrace{F}_{\text {Force }}=\underbrace{m \times a}_{\text {Mass } \times \text { Acceleration }}
$$

Claim: Newton's Law is a differential equation in disguise!

$$
\begin{array}{ll}
a(t)=\frac{d v}{d t}=v^{\prime}(t) & (v(t)=\text { velocity }) \\
v(t)=\frac{d x}{d t}=x^{\prime}(t) \quad(x(t)=\text { position }) \\
a(t)=x^{\prime \prime}(t) \quad F=m x^{\prime \prime}(t)
\end{array}
$$

Example (Simple harmonic oscillator)

Hooke's Law

$$
F=-K x(t)
$$

Newton's Law

$$
\begin{gathered}
F=m a \\
-K x(t)=m x^{\prime \prime}(t) \\
m x^{\prime \prime}(t)+K x(t)=0 \\
x^{\prime \prime}(t)+\frac{k}{m} x(t)=0
\end{gathered}
$$

Example (Falling mass)

Air resistance force

$$
\begin{aligned}
& F_{\text {air }}=-K x^{\prime}(t) \\
& F_{\text {gravity }}=-m g
\end{aligned}
$$

$$
\begin{gathered}
F=m a \\
-k x^{\prime}(t)-m g=m x^{\prime \prime}(t) \\
x^{\prime \prime}(t)+\frac{k}{m} x^{\prime}(t)+g=0
\end{gathered}
$$

Minimal surfaces (https://www.soapbubble.dk/)

Minimal surfaces

A soap bubble takes the shape with the least surface area.

For a surface of revolution with height $y(x)$ over the x-axis, y satisfies

$$
c^{2} y(x)^{2}-y^{\prime}(x)^{2}=1
$$

Minimal surfaces

A soap bubble takes the shape with the least surface area.
For a surface of revolution with height $y(x)$ over the x-axis, y satisfies

$$
c^{2} y(x)^{2}-y^{\prime}(x)^{2}=1
$$

The solution is a catenoid

$$
y(x)=\frac{e^{c x}+e^{-c x}}{2 c}
$$

Soap bubble videos:

- https://www.youtube.com/watch?v=3QgHxnDsrGQ?
- https://www.youtube.com/watch?v=ciciWBz8m_Y

Brachistochrone curve

Question: What is the shortest path for a rolling ball?

Brachistochrone demo:

- https://www.youtube.com/watch?v=OKjUqPps8vM

Brachistochrone curve

The Brachistochrone curve $(x, y(x))$ satisfies the differential equation

$$
y(x)+y(x) y^{\prime}(x)^{2}=C
$$

The solution is a cycloid (https://en.wikipedia.org/wiki/Cycloid):

