Math 1272: Calculus II
 8.2 Area of surface of revolution

Instructor: Jeff Calder Office: 538 Vincent
Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/1272S19

Surface of revolution

Area of surface of revolution
Consider a surface obtained by rotating the curve $y=f(x)$ about the x-axis.
What is the surface area?

Basic shapes: Cylinders and cones

Cylinder can be unrolled into h a rectangle

Cone can be unrolled to a section of a circe

$$
\underset{\text { Area }}{\text { Surface }}=\left(\frac{2 \pi r}{2 \pi x}\right) \pi l^{2 x}=\pi r l
$$

Surface area of partial
 cone from s_{2} to r_{2}.

$$
\begin{aligned}
S A & =\underbrace{\pi r_{2}\left(l+l_{1}\right)}_{\text {large cone }}-\underbrace{\pi r_{1} l_{1}}_{\text {small cove }} \\
& =\pi r_{2} l+\pi l_{2} l_{1}-\pi\left(r_{2} l_{1}-r_{1} l\right)
\end{aligned}
$$

Similar triangles

$$
\begin{aligned}
\frac{l+l_{1}}{r_{2}}=\frac{l_{1}}{r_{1}} \leadsto r_{1} l+r_{1} l_{1} & =\sqrt{2}^{2} l_{1} \\
r_{1} l_{1} & =r_{2} l_{1}-r_{1} l
\end{aligned}
$$

Area of surface of revolution
let $y=f(x)$ fo- $a \leq x \leq 1$

$$
\Delta x=\frac{b-a}{n}, x_{0}, x_{1}, \ldots, x_{n}
$$

Partial cone from

$$
x_{i} \text { to } x_{i+1}
$$

$$
\begin{aligned}
& S A_{i}=\pi l_{i}\left(f\left(x_{i}\right)+f\left(x_{i+1}\right)\right) \\
& \Phi=\pi\left(f\left(x_{i}\right)+f\left(x_{i+1}\right)\right) \sqrt{1+\left(f^{\prime}\left(x_{i}\right)\right)^{2}} \Delta x
\end{aligned}
$$

Sum from $i=0, \cdots, n-1$

$$
S A=\sum_{i=0}^{n-1} \pi\left(f\left(x_{i}\right)+f\left(x_{i+1}\right)\right) \sqrt{1+\left(f^{\prime}\left(x_{i}\right)\right)^{2}} \Delta x
$$

Riemann Sum for

$$
S A=\int_{a}^{b} 2 \pi \int_{\text {radius }}^{b} \underbrace{}_{\text {arclenth }}
$$

Area of surface of revolution

The surface area of a surface of rotation of the curve $y=f(x)$ about the x-axis from $x=a$ to $x=b$ is

$$
S=\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

Area of surface of revolution

We can also write

$$
\begin{array}{ll}
S=\int_{a}^{b} 2 \pi y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x, & Y=f(x) \\
\left.S=\int_{c}^{d} 2 \pi x \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y, \quad \text { (typo in book, pg } 533 \mathrm{Eq} 6\right) \\
S=\int 2 \pi y d s, \\
S=\int 2 \pi x d s, \\
\quad d s=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \quad \text { or } \quad d s=\sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y .
\end{array}
$$

where

Example 1. The arc of the parabola $y=x^{2}$ from $(1,1)$ to $(2,4)$ is rotated about the y-axis. Find the area of the surface.

$$
\begin{aligned}
x & =\sqrt{y} \\
S A & =2 \pi \int_{1}^{y} x \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y \\
& =2 \pi \int_{1}^{4} \sqrt{y} \sqrt{1+\frac{1}{4 y}} d y \\
& =2 \pi \int_{1}^{4} \sqrt{y+\frac{1}{4}} d y
\end{aligned}
$$

$$
\begin{aligned}
\frac{d x}{d y} & =\frac{1}{2} y^{-\frac{1}{2}} \\
& =\frac{1}{2 \sqrt{y}}
\end{aligned}
$$

$$
\begin{aligned}
& \left.=2 \pi \frac{2}{3}\left(4+\frac{1}{4}\right)^{3 / 2}\right]_{1}^{4} \\
& =\frac{4 \pi}{3}\left[\left(\frac{17}{4}\right)^{3 / 2}-\left(\frac{5}{4}\right)^{3 / 2}\right] \\
& =\frac{4 \pi}{34^{3 / 2}}\left(17^{3 / 2}-5^{3 / 2}\right) \\
& =\frac{\pi 1}{3 \sqrt{4}}\left(17^{3 / 2}-5^{3 / 2}\right)
\end{aligned}
$$

Example 2. Find the area of the surface generated by rotating the curve $y=e^{x}, 0 \leq x \leq 1$ about the x-axis.

$$
\begin{aligned}
S A & =2 \pi \int_{0}^{1} y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \\
& =2 \pi \int_{0}^{1} e^{x} \sqrt{1+\left(e^{x}\right)^{2}} d x \\
(\mathbb{N}) & =2 \pi \int_{1}^{e} \sqrt{1+u^{2}} d u
\end{aligned}
$$

Limits

$$
\tan \theta=1, \quad \tan \theta=e
$$

$$
\begin{aligned}
& u=e^{x} \\
& d u=e^{x} d x \\
& \hline u=\tan \theta \\
& d u=\sec ^{2} \theta d \theta
\end{aligned}
$$

$$
\begin{aligned}
& \theta= \pi / 4 \quad \theta=\tan ^{-1}(e) \quad 1+\tan ^{2} \theta=\sec ^{2} \theta \\
&(1)= 2 \pi \int_{\pi / 4 x^{-1}}^{\tan ^{-1}(e)} \sqrt{1+\tan ^{2} \theta} \sec ^{2} \theta d \theta \\
&= 2 \pi \int_{\pi / 4}^{\tan ^{-1}(e)} \sec ^{3} \theta d \theta \\
&= 2 \pi\left[\frac{1}{2} e \sec \left(\tan ^{-1}(e)\right)+\frac{1}{2} \ln \left|e+\sec \left(\tan ^{-1}(e)\right)\right|\right. \\
&\left.\quad-\frac{1}{2} \sec \left(\frac{\pi}{4}\right)-\frac{1}{2} \ln |1+\sec (\pi / 4)|\right] \\
& \sec \left(\frac{\pi}{4}\right)=\frac{1}{\cos (\pi / 4)}=\sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
& \sec \left(\tan ^{-1}(e)\right) \\
& \theta=\tan ^{-1}(e) \\
& e=\tan \theta
\end{aligned}
$$

$$
\begin{aligned}
\sec \left(\tan ^{-1}(e)\right) & =\sec (\theta) \\
& =\frac{1}{\cos (\theta)}=\sqrt{1+e^{2}}
\end{aligned}
$$

Plus back in....

Example 3. The infinite curve $y=e^{-x}, x \geq 0$ is rotated about the x-axis
Find the resulting area.

$$
\begin{aligned}
S A & =\int_{0}^{\infty} 2 \pi y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \\
& =\int_{0}^{\infty} 2 \pi e^{-x} \sqrt{1+\left(e^{-x}\right)^{2}} d x
\end{aligned}
$$

$$
\frac{d y}{d x}=-e^{-x}
$$

This is an improper integral. Let $t>0$ annul compute

$$
\begin{aligned}
& \int_{0}^{t} 2 \pi e^{-x} \sqrt{1+\left(e^{-x}\right)^{2}} d x \quad \operatorname{sub} u=e^{-} \\
& d u=-e^{-} \\
&=-\int_{1}^{e^{-t}} 2 \pi \sqrt{1+u^{2}} d u \\
&= \int_{e^{-t}}^{1} 2 \pi \sqrt{1+u^{2}} d u \quad \text { sub } u=\tan \theta \\
& d u=\sec ^{2} \theta d \theta
\end{aligned}
$$

$$
\left.\left.\begin{array}{rlrl}
=\int_{\tan ^{-1}\left(e^{-t}\right)}^{\frac{\pi}{4}} 2 \pi \sec ^{3} \theta d \theta & \sqrt{1+n^{2}} & =\sqrt{1+\tan ^{2} \theta} \\
& =\sqrt{\sec ^{2} \theta} \\
& =\sec \theta
\end{array}\right] \quad\right]_{\tan ^{-1}\left(e^{-t}\right)}^{=\pi\left[\tan \theta \sec \theta+\ln |\tan \theta+\sec \theta|{ }^{\frac{\pi}{4}}\right.} \begin{aligned}
&=\pi\left[\sqrt{2}+\ln (\sqrt{2}+1)-e^{-t} \sec \left(\tan ^{-1}\left(e^{-t}\right)\right)\right. \\
&\left.-\ln \mid e^{-t}+\sec \left(\tan ^{-1}\left(e^{-t}\right)\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} \sec \left(\tan ^{-1}\left(e^{-t}\right)\right) \\
= & \sec \left(\lim _{t \rightarrow \infty} \tan ^{-1}\left(e^{-t}\right)\right) \quad \sec x \text { continusu) } \\
= & \sec \left(\tan ^{-1}\left(\lim _{t \rightarrow L} e^{-t}\right)\right) \quad \tan ^{-1} \text { continuous } \\
= & \sec \left(\tan ^{-1}(0)\right)=\sec (0)=1
\end{aligned}
$$

$$
\begin{aligned}
\int_{0}^{\infty} 2 \pi e^{-x} \sqrt{1+\left(e^{-x}\right)^{2}} d x & =\lim _{t \rightarrow \alpha} \int_{0}^{t} 2 \pi e^{-x} \sqrt{1+\left(e^{-x}\right)^{2}} d x \\
& =\pi(\sqrt{2}+\ln (\sqrt{2}+1)) \\
& =\text { Surface area. }
\end{aligned}
$$

