Math 1272: Calculus II
 8.3 Applications to physics and engineering

Instructor: Jeff Calder Office: 538 Vincent
Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/1272S19

Hydrostatic pressure and force

Water
depth $=d$.
density $=$
plate with area A

$$
P_{\text {ressure }}=\frac{F}{A}=p s d
$$

$$
M_{a s s}=\rho \cdot A d
$$

Force $=m g=\rho A g d$

Hydrostatic pressure and force

The pressure at depth d in a fluid with density ρ is

$$
P=\rho g d,
$$

where g is acceleration due to gravity.
Example 1. A dam has the shape of an equilateral triangle with height 10 m , and is filled with a fluid with density ρ up to 2 m from the top. Find the hydrostatic pressure of the fluid on one side of the dam.

$$
\begin{aligned}
& \cos (60)=\frac{1}{2} \\
& \sin (60)=\frac{\sqrt{3}}{2} \\
& \tan (60)=\sqrt{3} \\
& \sin (30)=\frac{1}{2}
\end{aligned}
$$

$$
\sin (45)=\frac{1}{\sqrt{2}}
$$

$$
\cos (45)=\frac{1}{\sqrt{2}}
$$

$$
\tan (45)=1
$$

$$
\begin{aligned}
\text { Farce on Slab } & =P \cdot A \\
& =\rho g \times l \Delta x \\
& =\rho g \times \frac{2}{\sqrt{3}}(8-x) \Delta x
\end{aligned}
$$

Riemann Sum our all slabs $x_{0}, x_{y}, \ldots, x_{n}$

$$
\begin{gathered}
\text { Free on dam }_{\text {wall }} \approx \sum_{i=1}^{n} \rho g \frac{2}{\sqrt{3}} x_{i}\left(8-x_{i}\right) \Delta x \\
\end{gathered}
$$

Send $\Delta x \rightarrow 0$
to get

$$
\begin{aligned}
\text { Farce } & =\int_{0}^{8} \rho g \frac{2}{\sqrt{3}} x(8-x) d x \\
& =\rho g \frac{2}{\sqrt{3}} \int_{0}^{8} 8 x-x^{2} d x \\
& =\rho g \frac{2}{\sqrt{3}}\left[4 x^{2}-\frac{1}{3} x^{3}\right]_{0}^{8} \\
& =\frac{2 \rho 9}{\sqrt{3}}\left[256-\frac{512}{3}\right] \ldots
\end{aligned}
$$

$$
\begin{aligned}
& d_{2}=x_{2}-\bar{x} \\
& d_{1}=\bar{x}-x_{1} \\
& d_{1} m_{1}=d_{2} m_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\bar{x}-x_{1}\right) m_{1}=\left(x_{2}-\bar{x}\right) m_{2} \\
& m_{1} \bar{x}-m_{1} x_{1}=m_{2} x_{2}-m_{2} \bar{x} \\
& \left(m_{1}+m_{2}\right) \bar{x}=m_{1} x_{1}+m_{2} x_{2}
\end{aligned}
$$

$$
\bar{x}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}
$$

Set $\left.m=m_{1}+m_{2} \begin{array}{c}\text { Total } \\ \text { mass }\end{array}\right)$
Then

$$
\bar{x}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m}
$$

$\bar{x}=$ Center of mass

Suppose we have n mosses $m_{1}, m_{2}, \ldots, m_{n}$ at position e $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$

$$
\begin{aligned}
& \bar{x}=\frac{\sum_{i=1}^{n} m_{i} x_{i}}{\sum_{i=1}^{n} m_{i}}=\frac{\mu_{y}}{m} \\
& (\bar{x}, \bar{y})=\text { Contrail } \\
& \bar{y}=\frac{\sum_{i=1}^{n} m_{i} y_{i}}{\sum_{i=1}^{n} m_{i}}=\frac{\mu_{x}}{m} \quad \text { or center mass. }
\end{aligned}
$$

Moments and centers of mass

Consider n masses at positions $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ with masses m_{1}, \ldots, m_{n}. The moment about the x-axis is

$$
M_{x}=\sum_{i=1}^{n} m_{i} y_{i}
$$

and the moment about the y-axis is

$$
M_{y}=\sum_{i=1}^{n} m_{i} x_{i}
$$

The center of mass (\bar{x}, \bar{y}) is given by

$$
\overline{\bar{x}}=\frac{M_{y}}{m} \quad \text { and } \quad \bar{y}=\frac{M_{x}}{m}
$$

where $m=\sum_{i=1}^{n} m_{i}$ is the total mass.

Example 2. Find the moments and center of mass of the system of objects that have masses $1,2,3$ at positions $(0,0),(0,1)$, and $(1,1)$.

$$
\begin{aligned}
& \bar{x}=\frac{\sum_{i=1}^{3} m_{i} x_{i}}{\sum_{i=1}^{3} m_{i}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}}{m_{1}+m_{2}+m_{3}}=\frac{1 \cdot 0+2 \cdot 0+3 \cdot 1}{1+2+3}=\frac{1}{2} \\
& \bar{y}=\frac{m_{1} y_{1}+m_{2} y_{2}+m_{3} y_{3}}{m_{1}+m_{2}+m_{3}}=\frac{1.0+2.1+3.1}{1+2+3}=\frac{5}{6}
\end{aligned}
$$

Moments and centers of mass of lamina
Consider the region R that lies between the lines $x=a, x=b, y=0$ and $y=f(x)$ for a -positive function f. Upon this region lies a flat plat (lamina) with density ρ.

$$
\begin{aligned}
\bar{x}_{i} & =\frac{x_{i}+x_{i+1}}{2} \\
\bar{y}_{i} & =\frac{f\left(\bar{x}_{i}\right)}{2} \\
M_{i} & =A \rho \\
& =f\left(\bar{x}_{i}\right) \cdot \Delta x \rho
\end{aligned}
$$

$$
\begin{aligned}
\bar{x} \approx & \frac{\sum_{i=1}^{n} m_{i} \bar{x}_{i}}{\sum_{i=1}^{n} m_{i}}, \quad \bar{y} \simeq \frac{\sum_{i=1}^{n} m_{i} \bar{y}_{i}}{\sum_{i=1}^{n} m_{i}} \\
m_{i}= & f\left(\bar{x}_{i}\right) \Delta x \rho_{1} \quad \bar{x}_{i}=\frac{x_{i}+x_{i+1}}{\alpha}, \bar{y}_{i}=\frac{f\left(x_{i}\right)}{2} \\
& \sum_{i=1}^{n} m_{i}=\sum_{i=1}^{n} f\left(\bar{x}_{i}\right) \Delta x \rho \approx \rho \int_{a}^{b} f(x) d x \\
& \sum_{i=1}^{n} m_{i} \bar{x}_{i}=\sum_{i=1}^{n} f\left(\bar{x}_{i}\right) \bar{x}_{i} \Delta x \rho \approx \rho \int_{a}^{b} x f(x) d x
\end{aligned}
$$

$$
\begin{aligned}
\sum_{i=1}^{n} m_{i} \bar{y}_{i} & =\sum_{i=1}^{n} f\left(\bar{x}_{i}\right) \Delta x \rho \frac{f\left(\bar{x}_{i}\right)}{2} \\
& \approx \rho \int_{a}^{b} \frac{1}{2} f(x)^{2} d x
\end{aligned}
$$

$$
\begin{aligned}
& \bar{X}=\frac{1}{A} \int_{a}^{b} x f(x) d x \\
& \bar{Y}=\frac{1}{A} \int_{a}^{b}\left(\frac{1}{2}[f(x))^{2}\right) d x \underbrace{\frac{1}{2} f(x)}_{y} \cdot f(x) \\
& A=\int_{a}^{b} f(x) d x \\
& (\bar{x}, \bar{y})=\text { center ef mase. }
\end{aligned}
$$

Moments and centers of mass of lamina

The moment about the y-axis is

$$
M_{y}=\rho \int_{a}^{b} x f(x) d x
$$

and the moment about the x-axis is

$$
M_{x}=\rho \int_{a}^{b} \frac{1}{2}[f(x)]^{2} d x
$$

The mass of the plate is

$$
m=\rho \int_{a}^{b} f(x) d x
$$

and the center of mass is

$$
\bar{x}=\frac{M_{y}}{m} \quad \text { and } \quad \bar{y}=\frac{M_{x}}{m} .
$$

Example 3. Find the center of mass of a semicircular plate of radius r.

$$
A=2 \int_{0}^{r} \sqrt{r^{2}-x^{2}} d x=\frac{\pi r^{2}}{2}
$$

Trig sub $x=r \sin \theta$

$$
\begin{aligned}
& \sqrt{r^{2}-x^{2}}=\sqrt{r^{2}-r^{2} \sin ^{2} \theta} \\
&=r \sqrt{1-\sin ^{2} \theta} \\
&=r \sqrt{\cos ^{2} \theta} \quad \\
&=r \cos \theta, \quad x^{2} \\
& y^{2} \\
&
\end{aligned}
$$

$$
\begin{aligned}
& x=r \sin \theta, \quad \begin{aligned}
& x: 0 \longrightarrow r \\
& \sin \theta: 0 \longrightarrow 1 \\
& \theta: \sin ^{-1}(0) \longrightarrow \sin ^{-1}(1) \\
&: 0 \longrightarrow \frac{\pi}{2}
\end{aligned} \\
& A=2 \int_{0}^{\pi / 2} r^{2} \cos ^{2} \theta d \theta \\
&= 2 r^{2} \int_{0}^{\pi / 2}\left(\frac{1}{2}+\frac{1}{2} \cos (2 \theta)\right) d \theta .
\end{aligned}
$$

$$
\begin{aligned}
& \left.=2 r^{2}\left(\frac{\theta}{2}+\frac{1}{4} \sin (2 \theta)\right)\right]_{0}^{\pi / 2} \\
& =2 r^{2}\left(\frac{\pi}{4}+\frac{1}{4} \sin (\pi)\right)=\frac{\pi r^{2}}{2} \\
\bar{x} & =\frac{1}{A} \int_{-r}^{r} x f(x) d x
\end{aligned}=\frac{1}{A} \int_{-r}^{r} x \sqrt{r^{2}-x^{2}} d x=0 \quad\left(\begin{array}{l}
2\left(r^{2}-x^{2}\right)^{3 / 2} \\
\\
\end{array}\right]_{-r}^{r}=0
$$

$$
\begin{aligned}
\bar{y} & =\frac{1}{A} \int_{-r}^{r} \frac{1}{2}(f(x))^{2} d x \\
& \left.=\frac{1}{A} \int_{-r}^{r} \frac{1}{2}\left(r^{2}-x^{2}\right) d x \right\rvert\, A=\frac{\pi r^{2}}{2} \\
& \left.=\frac{1}{2 A}\left(r^{2} x-\frac{1}{3} x^{3}\right)\right)\left._{-r}^{r}\right|_{\frac{1}{A}=\frac{2}{\pi r^{2}}} ^{3 A} \\
& =\frac{2}{2 A}\left(r^{3}-\frac{1}{3} r^{3}\right)=\frac{2}{3 A} r^{3}=\frac{r}{3 \pi}
\end{aligned}
$$

Example 4. Find the centroid of the region bounded by the curves $y=\cos x$, $y=0, x=0$, and $x=\pi / 2$.

$$
\begin{aligned}
& A=\int_{0}^{y}=0, x=0, \text { and } x=\pi / 2 . \\
&=\sin x d x \\
& \bar{x}=\frac{1}{A} \int_{0}^{\pi / 2} x \cos x d x \quad \cos (x) \\
& A=1 \\
&=\left.x \sin x\right|_{0} ^{\pi / 2}-\int_{0}^{\pi / 2} \sin x d x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\pi}{2}+\left.\cos x\right|_{0} ^{\pi / 2}=\frac{\pi}{2}-1 \\
\bar{y} & =\frac{1}{A} \int_{0}^{\pi / 2} \frac{1}{2}(f(x))^{2} d x \\
& =\frac{1}{A} \int_{0}^{\pi / 2} \frac{1}{2} \cos ^{2} x d x \\
A=1 & =\frac{1}{2} \int_{0}^{\pi / 2}\left(\frac{1}{2}+\frac{1}{2} \cos (2 x)\right) d x \\
& =\left.\frac{1}{4}\left(x+\frac{1}{2} \sin (2 x)\right)\right|_{0} ^{\pi / 2}=\frac{\pi}{8}
\end{aligned}
$$

$$
\sum_{i=1}^{n} \underbrace{f\left(x_{i}\right) \Delta x}_{\text {area of one }}
$$ rectangle.

$$
\lim _{\Delta x \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

= Area under from

$$
x=a \quad \text { to } \quad x=b \text {. }
$$

Denote Area by

