Math 1272: Calculus II 9.1 Modelling with differential equations

Instructor: Jeff Calder Office: 538 Vincent
Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/1272S19

Basic population growth model
If $P(t)$ is the population at time t, then

$$
\frac{d P}{d t}=k P,
$$

for some proportionality constant $k>0$.
A solution $P(t)=A e^{k t}$
Check: $\frac{d P}{d t}=A k e^{k t}=k P(t)$
Solutions to differential equations involve arbitrary constants (A)

This gives a family of solutions.

$$
P(t)=A e^{k t}, \quad P(0)=A
$$

Initial value problem

$$
\left\{\begin{array}{l}
\frac{d P}{d t}=k P(t) \\
P(0)=P_{0}
\end{array}\right.
$$

Solution is $P(t)=P_{0} e^{k t}$

If $P_{0}=100, P(t)=100 e^{k t}$

Improved model

The basic model grows forever: $\left\langle P(t)=C e^{k t}\right.$.

A more realistic model:

1. $\frac{d P}{d t} \approx k P$ for small P
2. $\frac{d P}{d t}<0$ if $P>M$.

A model that satisfies both assumptions is

$$
\frac{d P}{d t}=k P\left(1-\frac{P}{M}\right)
$$

This is the Logistic differential equation proposed by Pierre-Francois Verhulst in 1840's to model population growth.

Some observations about logistic equation

$$
\frac{d P}{d t}=k P\left(1-\frac{P}{M}\right) .
$$

Equilibrium solutions, $P(t)=0, \quad P(t)=M$

Motion of a spring

$$
\frac{d^{2} x}{d t^{2}}=-\frac{k}{m} x .(t)
$$

General differential equations

- A differential equation is an equation that contains an unknown function and one or more of its derivatives.
- The order of the differential equations is the highest derivative that occurs in the equation.
- What order is the logistic equation?

$$
\frac{d P}{d t}=k P\left(1-\frac{P}{M}\right) . \quad \text { First order }
$$

- What order is the spring/mass equation

$$
\frac{d^{2} x}{d t^{2}}=-\frac{k}{m} x . \quad \text { Secoud order. }
$$

Examples of differential equations

1. $y^{\prime}=x y \quad$ where $y=y(x)$.
2. $f^{\prime}(x)=x f(x)$
3. $y^{\prime}(x)=x^{3}$
4. $y(x)^{2}+y^{\prime}(x) y(x)=0$.
5. $y e^{y^{\prime \prime}} \sin \left(y^{\prime \prime \prime \prime}\right)=\log (x y)$.

Examples

Show that for every number c the function

$$
y=\frac{1+c e^{t}}{1-c e^{t}}
$$

is a solution of the differential equation $y^{\prime}=\frac{1}{2}\left(y^{2}-1\right)$.

Find a solution of the differential equation $y^{\prime}=\frac{1}{2}\left(y^{2}-1\right)$ satisfying $y(0)=1$

Find a solution of the differential equation $y^{\prime}=\frac{1}{2}\left(y^{2}-1\right)$ satisfying $y(0)=4$.

