Math 1272: Calculus II 9.1 Modelling with differential equations

Instructor: Jeff Calder Office: 538 Vincent Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/1272S19

Basic population growth model

If P(t) is the population at time t, then

$$\frac{dP}{dt} = kP_t$$

for some proportionality constant k > 0.

A solution P(t) = AeKt <u>Check:</u> $\frac{dP}{dt} = A K e^{kt} = K P(t) \sqrt{}$ Solutions to differential equations involve arbitrary constants (A)

This gives a family of solutions. $P(t) = A e^{kt}$, P(o) = AInitial value problem $\int \frac{dP}{dt} = k P(t)$ $P(0) = P_0$ Solution is P(t) = Poekt

Improved model

The basic model grows forever: $P(t) = Ce^{kt}$.

A more realistic model:

1.
$$\frac{dP}{dt} \approx kP$$
 for small P

2.
$$\frac{dP}{dt} < 0$$
 if $P > M$.

A model that satisfies both assumptions is

$$\frac{dP}{dt} = kP\left(1 - \frac{P}{M}\right).$$

This is the **Logistic differential equation** proposed by Pierre-Francois Verhulst in 1840's to model population growth.

Some observations about logistic equation

Motion of a spring

$$\frac{d^2x}{dt^2} = -\frac{k}{m}x.(, ,)$$

General differential equations

- A differential equation is an equation that contains an unknown function and one or more of its derivatives.
- The **order** of the differential equations is the highest derivative that occurs in the equation.
 - What order is the logistic equation?

$$\frac{dP}{dt} = kP\left(1 - \frac{P}{M}\right).$$
 First order

- What order is the spring/mass equation

$$\frac{d^2x}{dt^2} = -\frac{k}{m}x.$$
 Second order.

Examples of differential equations

1.
$$y' = xy$$
 where $y = y(x)$.
2. $f'(x) = xf(x)$
3. $y'(x) = x^3$
4. $y(x)^2 + y'(x)y(x) = 0$.
5. $ye^{y''}\sin(y'''') = \log(xy)$.

Examples

Show that for every number c the function

$$y = \frac{1 + ce^t}{1 - ce^t}$$

is a solution of the differential equation $y' = \frac{1}{2}(y^2 - 1)$.

Find a solution of the differential equation $y' = \frac{1}{2}(y^2 - 1)$ satisfying y(0) = 1

Find a solution of the differential equation $y' = \frac{1}{2}(y^2 - 1)$ satisfying y(0) = 4.