Math 1272: Calculus II
 9.2 Direction Fields and Euler's Method

Instructor: Jeff Calder
Office: 538 Vincent
Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/1272S19

Direction Fields

Consider the differential equation

$$
y^{\prime}=x+y, \quad y(0)=1
$$

The equation says the slope of y is $x+y$.

$$
\frac{d y}{d x}=x+y
$$

Direction Fields

For a differential equation of the form

$$
y^{\prime}=F(x, y)
$$

$F(x, y)$ is the slope. A Direction Field is a sketch consisting of short line segments of slope $F(x, y)$ at points (x, y) in the plane.

The solution can be sketched by tracing the direction field.

Sketch the direction field for $y^{\prime}=x^{2}+y^{2}-1$ and sketch a solution.

Equations of the form

$$
y^{\prime}=F(y)
$$

are called autonomous. The slope depends only on y.

Euler's method
Consider a differential equation

$$
y^{\prime}=F(x, y) \quad \text { with } y(0)=a \text {. }
$$

$$
\begin{aligned}
y(x+h) & \approx y(x)+h \frac{d y}{d x}(x) \\
& =y(x)+h y^{\prime}(x) \\
& =y(x)+h F(x, y(x))
\end{aligned}
$$

Euler's method

Approximate values for the solution of the inital value problem

$$
y^{\prime}=F(x, y) \quad y\left(x_{0}\right)=y_{0}
$$

with step size h at $x_{n}=x_{n-1}+h$ are

$$
y_{n}=y_{n-1}+h F\left(x_{n-1}, y_{n-1}\right)
$$

Use Euler's method with step size 0.1 to construct a table of approximate values for the solution of the initial-value problem

	$y^{\prime}=2 x+$		
n	x	y	y^{\prime}
0	0	1	3
1	0.1	1.3	4.1
2	0.2	1.71	5.53
3	0.3	2.263	
4			
5			

$$
y^{\prime}=2 x+3 y \quad y(0)=1
$$

$$
\begin{aligned}
y_{1} & =y_{0}+h F\left(x_{0}, y_{0}\right) \\
& =1+0.1 .3=1.3 \\
y_{1}^{\prime} & =2(0.1)+3(1.3)=4.1 \\
y_{2} & =y_{1}+0.1 .(4.1) \\
& =1.3+0.41=1.71 \\
y_{2}^{\prime} & =2(0.2)+3(1.71) \\
& =5.53
\end{aligned}
$$

$$
\begin{aligned}
y_{3} & =y_{2}+0.1(5.53) \\
& =1.71+0.553 \\
& =2.263
\end{aligned}
$$

Use Euler's method with step size 0.05 to construct a table of approximate values for the solution of the initial-value problem

	$y^{\prime}=2 x$		
n	x	y	$y^{\prime}=x+y$
0	0.00	1	1
1	0.05	1.05	1.10
2	0.10	1.105	1.205
3	0.15		
4	0.20		

$$
y(0)=1 . \quad h=0.05
$$

$$
y_{1}=y_{0}+h\left(x_{0}+y_{0}\right)
$$

$$
=1+0.05(0+1)
$$

$$
=1.05
$$

$$
\begin{aligned}
y_{2} & =y_{1}+h\left(x_{1}+y_{1}\right) \\
& =1.05+0.05(1.10) \\
& =1.05+.055=1.105
\end{aligned}
$$

$$
y^{\prime}=2 x+3 y \quad y(0)=1
$$

