Math 1272: Calculus II 9.5 Linear Equations

Instructor: Jeff Calder Office: 538 Vincent
Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/1272S19

Linear equations

A fist order linear differential equation has the form first

$$
\frac{d y}{d x}+P(x) y=Q(x) .
$$

We can solve all such equations with the integrating factor method.

Integrating factor

$$
y^{\prime}+P(x) y=Q(x)
$$

Idea: Multiply both sides by $I(x)$

$$
\begin{aligned}
& \frac{d}{d x}(I(x) y)=I(x)\left(y^{\prime}+P(x) y\right)=I(x) Q(x) \\
& \text { Choose } I \text { so this holds } \\
& I(x) y(x)=\int I(x) Q(x) d x \\
& y(x)=\frac{1}{I(x)} \int I(x) Q(x) d x
\end{aligned}
$$

How to select integrating factor $I(x)$?

$$
\begin{gathered}
\frac{d}{d x}(I(x) y)=I(x)\left(y^{\prime}+P(x) y\right) \\
\| \text { want } \\
\frac{d}{d x}(I(x) y)=I(x) y^{\prime}+I^{\prime}(x) y
\end{gathered}
$$

Need $\quad I(x) P(x)=I^{\prime}(x)=\frac{d I}{d x}$

$$
\int p(x) d x=\int \frac{d I}{I}
$$

$$
\begin{aligned}
& \ln |I|=\int p(x) d x \\
& |I|=e^{\int p(x) d x} \\
& I(x)= \pm e^{\int p(x) d x} \operatorname{ch} x x+ \\
& I(x)=e^{\int p(x) d x} \\
& y(x)=\frac{1}{I(x)} \int I(x) Q(x) d x
\end{aligned}
$$

Solve the differential equation

$$
\begin{array}{ll}
\text { on } & P(x)=3 x^{2} \\
\frac{d y}{d x}+3 x^{2} y=6 x^{2} . & Q(x)=6 x^{2}
\end{array}
$$

Integrating factor $I(x)=e^{\int p(x) d x}=e^{x^{3}}$

$$
\begin{aligned}
\underbrace{e^{x^{3}} y^{\prime}+3 x^{2} e^{x^{3}} y} & =6 x^{2} e^{x^{3}} \\
\frac{d}{d x}\left(e^{x^{3}} y\right) & =6 x^{2} e^{x^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& e^{x^{3}} y= \int 6 x^{2} e^{x^{3}} d x \\
& u=x^{3}, d u=3 x^{2} d x \\
&=2 \int e^{u} d u \\
&=2 e^{u}+C \\
&=2 e^{x^{3}}+C \\
& y(x)=2+C e^{-x^{3}}
\end{aligned}
$$

Find the solution of the initial value problem

$$
x^{2} y^{\prime}+x y=1, x>0, y(1)=2 . \quad P(x)=\frac{1}{x}
$$

Stander l form

$$
y^{\prime}+\frac{1}{x} y=\frac{1}{x^{2}} \quad Q(x)=\frac{1}{x^{2}}
$$

Iutegratis factor $I(x)=e^{\int P(x) d x}=e^{\ln x}=x$

CHS

$$
\frac{d}{d x}(I y)
$$

$$
\begin{aligned}
x\left(y^{\prime}+\frac{1}{x} y\right) & =\frac{x}{x^{2}} \\
x y^{\prime}+y & =\frac{1}{x} \\
\left\{\frac{d}{d x}(x y)\right. & =\frac{1}{x}
\end{aligned}
$$

$$
\begin{aligned}
& x y=\ln x+C, x>0 \\
& \left\{\begin{array}{l}
y(x)=\frac{\ln x}{x}+\frac{c}{x} \\
y(1)=2
\end{array}\right. \\
& 2=y(1)=\frac{c}{1}=c \rightarrow c=2 \\
& y(x)=\frac{\ln x}{x}+\frac{2}{x}
\end{aligned}
$$

The current $I(t)$ in an electric circut with voltage source V, resistance R and inductance L satisfies the differential equation I

$$
I \frac{d I}{}
$$

Solve for the current $I(t)$. $\frac{L_{\overline{d T}}}{d t}$

$$
L \frac{d I}{d T}+R I(t)=V
$$

\square
$P(t) \int P(t) d t=\int \frac{R}{L} d t=\frac{R t}{L}$

$$
\begin{aligned}
& I^{\prime}+\left(\frac{R}{L}\right) I=\frac{V}{L}, \\
& e^{\frac{R}{L} t}\left(I^{\prime}+\frac{R}{L} I\right)=\frac{V}{L} e^{\frac{R}{L} t} \\
& \frac{d}{d t}\left(e^{\frac{R}{L} t} I\right)=\frac{V}{L} e^{\frac{R}{L} t}
\end{aligned}
$$

$$
\begin{aligned}
\text { integrating facts } \\
\begin{aligned}
J(t) & =e^{\int p(t) d t} \\
& =e^{\frac{R}{L} t}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
e^{\frac{R}{L} t} I(t) & =\int \frac{v}{L} e^{\frac{R}{L} t} d t \\
& =\frac{V}{t} \cdot \frac{L}{R} e^{\frac{R}{L} t}+C \\
& =\frac{V}{R} e^{\frac{R}{L} t}+C \\
I(t) & =\frac{V}{R}+C e^{-\frac{R}{L} t}
\end{aligned}
$$

Suppose the voltage V is variable (AC or alternating current), given by $V(t)=$ $\sin (t)$. The current $I(t)$ then satisfies

Solve for the current $I(t)$

$$
\begin{aligned}
& I^{\prime}+\frac{R}{L} I=\frac{\sin (t)}{L}, J(t)=e^{\frac{R}{L} t} \\
& e^{\frac{R}{L} t}\left(I^{\prime}+\frac{R}{L} I\right)=\frac{\sin (t)}{L} e^{\frac{R}{L} t} \\
& \frac{d}{d t}\left(e^{\frac{R}{L} t} I\right)=\frac{\sin (t)}{L} e^{\frac{R}{L} t}
\end{aligned}
$$

$$
\begin{aligned}
& e^{\frac{R}{L} t} I(t)=\int \frac{\sin (t)}{L} e^{\frac{R}{L} t} d t \\
& \int \frac{\sin (t)}{L} e^{\frac{R}{L} t} d t=-\frac{\cos t}{L} e^{\frac{R}{L} t}+\int \cos t \frac{R}{L^{2}} e^{\frac{R}{L} t} d t \\
& \begin{array}{l|l}
u=\frac{e^{\frac{R}{L} t}}{L}, d v=\sin (t) d t t \\
d u=\frac{R}{L^{2}} e^{\frac{R}{L} t} d t,
\end{array} \left\lvert\, \begin{array}{l}
u=\frac{R}{L^{2}} e^{\frac{R}{L} t}, \quad J v=\cos t d t \\
J u=\frac{R^{2}}{L^{2}} e^{\frac{R}{L} t} \quad v=\sin t
\end{array}\right. \\
& v=-c x t \\
& \begin{array}{l}
=-\frac{\cos t e^{\frac{R}{L} t}}{L}+\frac{R}{L^{2}} \sin t e^{\frac{R}{L} t} \\
t_{0} L H S-\int \sin t \frac{R^{2}}{L^{3}} e^{\frac{R}{L} t} d t
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{R^{2}}{L^{2}}+1\right) \frac{1}{L} \int \sin t e^{\frac{R}{L} t} d t=-\frac{\cos t e^{\frac{R}{L} t}}{L}+\frac{R}{L^{2}} \sin t e^{\frac{R}{L} t} \\
& \frac{1}{L} \int \sin t e^{\frac{R}{L} t} d t=\frac{1}{\frac{R^{2}}{L^{2}}+1}\left[\frac{-\cos t e^{\frac{R}{L} t}}{L}+\frac{R}{L^{2}} \sin t e^{\frac{R}{L} t}\right]+C \\
& e^{\frac{R}{L} t} I(t)=\int \frac{\sin (t)}{L} e^{\frac{R}{L} t} d t \\
& I(t)=\frac{1}{\frac{R^{2}}{L^{2}}+1}\left[\frac{-\cos t}{L}+\frac{R}{L^{2}} \sin t\right]+C e^{-\frac{R}{L} t}
\end{aligned}
$$

$$
I(t)=\frac{1}{R^{2}+L^{2}}(-L \cos t+R \sin t)+C e^{-\frac{R}{L} t}
$$

