Math 1272: Calculus II 9.6 Predator-Prey system

Instructor: Jeff Calder Office: 538 Vincent
Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/1272S19

Predator-Prey (Rabbits/Wolves)

- $R(t)=$ population of prey (rabbits)
- $W(t)=$ population of predator (wolves)

Without iteration between predator and prey:

Predator-Prey (Rabbits/Wolves)

- We assume the number of "interactions" is proportional to $R(t) W(t)$.
- Each interaction decreases the number of prey, and provides food for the predator, increasing their propulation.

Thus, a more realistic model is

$$
k, r, a, b>0
$$

$$
\begin{aligned}
\frac{d R}{d t} & =k R-a R W \\
\frac{d W}{d t} & =-r W+b R W
\end{aligned}
$$

These are the Lotka-Volterra equations. They form a coupled system of differential equations.

Predator-Prey (Rabbits/Wolves)

- We assume the number of "interactions" is proportional to $R(t) W(t)$.
- Each interaction decreases the number of prey, and provides food for the predator, increasing their propulation.

Even more realistic is to use the logistic model for prey

$$
\begin{aligned}
\frac{d R}{d t} & =k R\left(1-\frac{R}{M}\right)-a R W \\
\frac{d W}{d t} & =-r W+b R W
\end{aligned}
$$

Assume $k=2 r=1, a=10$ and $b=5$. The Lotka-Voltera equations are

$$
\begin{aligned}
& \frac{d R}{d t}=2 R-10 R W=0 \\
& \frac{d W}{d t}=-W+5 R W .=0
\end{aligned}
$$

Find the equilibrium solutions.

$$
\begin{gathered}
2 R-10 R \omega=0 \quad 2=10 \omega, \omega=\frac{2}{10}=\frac{1}{5} \\
-W+5 R W=0, \quad 5 R=1, \quad R=\frac{1}{5} \\
(\omega, R)=\left(\frac{1}{5}, \frac{1}{5}\right)
\end{gathered}
$$

$$
\begin{aligned}
& \frac{d R}{d t}=2 R-10 R W \\
& \frac{d W}{d t}=-W+5 R W .
\end{aligned} \quad \frac{d R}{d t}=\frac{1}{\frac{d t}{d R}}
$$

Find an equation for $\frac{d W}{d R}$.

$$
\frac{d w}{d R}=\frac{-w+5 R w}{2 R-10 R w}
$$

Sketch the direction field for $\frac{d W}{d R}$, and some solutions.

$$
\frac{d w}{d R}=\frac{-w+5 R w}{2 R-10 R w}=\frac{A}{B}
$$

$$
\begin{aligned}
& A=0 \text { if } R=\frac{1}{5} \\
& B=0 \text { if } w=\frac{1}{5} \\
& \frac{d w}{d R}=\frac{w}{R}\left(\frac{5 R-1}{2-10 w}\right)
\end{aligned}
$$

