Math 1272: Calculus II
 10.1 Curves defined by parametric equations

Instructor: Jeff Calder Office: 538 Vincent
Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/1272S19

Parametric equations

We have seen curves of the form $(x, f(x))$. Some curves cannot be expressed this way.

Parametric equations

A curve in parametric form is given by

$$
x=f(t), \quad y=g(t) \quad \text { for } a \leq t \leq b
$$

The initial point is $(f(a), g(a))$ and the terminal point is $(f(b), g(b))$.

Sketch and identify the curve defined by

$0 \leq t \leq 1$.		
t	x	y
0	0	1
$1 / 4$	$1 / 16$	$5 / 4$
$1 / 2$	$1 / 4$	$3 / 2$
$3 / 4$	$9 / 16$	$7 / 4$
1	1	2

Eliminate $t: t=y-1, \quad x=t^{2}=(y-1)^{2}$

$$
x=(y-1)^{2}
$$

What curve is represented by the parametric equation

$$
\begin{array}{r}
x=\cos t, \quad y=\sin t, \quad 0 \leq t \leq 2 \pi ? \\
x^{2}+y^{2}=(\cos t)^{2}+(\sin t)^{2}=1
\end{array}
$$

Circle of radius one.

$$
\begin{aligned}
& \frac{d y}{d t}=\cos (t) \\
& \left.\frac{d y}{d t}\right|_{t=0}=\cos (0)=1
\end{aligned}
$$

What about

$$
\begin{gathered}
x=\cos (2 t), \quad y=\sin (2 t), \quad 0 \leq t \leq 2 \pi ? \\
x^{2}+y^{2}=\cos ^{2}(2 t)+\sin ^{2}(2 t)=1
\end{gathered}
$$

Completer the circle twice.

Find the parametric equation for a circle of radius r and center (h, k).
Equation for circle $(x-h)^{2}+(y-k)^{2}=r^{2}$

Check

$$
\begin{aligned}
& (x(t)-h)^{2}+(y(t)-k)^{2} \\
= & (r \cos t)^{2}+(r \sin t)^{2} \\
= & r^{2} \cos ^{2} t+r^{2} \sin ^{2} t \\
= & r^{2}\left(\cos ^{2} t+\sin ^{2} t\right)=r^{2}
\end{aligned}
$$

Examples of parametric curves

Examples of parametric curves

Examples of parametric curves

Brachistochrone curve

Question: What is the shortest path for a rolling ball?

Brachistochrone demo:

- https://www.youtube.com/watch?v=OKjUqPps8vM

Brachistochrone curve

The Brachistochrone curve $(x, y(x))$ satisfies the differential equation

$$
y(x)+y(x) y^{\prime}(x)^{2}=C . \quad y\left(1+\left(\frac{d y}{d x}\right)^{2}\right)=C
$$

The solution is a cycloid (https://en.wikipedia.org/wiki/Cycloid):

$$
\sin \theta=\frac{|P B|}{r}, \cos \theta=\frac{|B C|}{r}
$$

Cycloids
Find the parametric equation for a cycloid.

$$
P=(x(\theta), y(\theta))
$$

$$
\begin{aligned}
|O A| & =\operatorname{arc}(P A)=r \theta \\
x(\theta) & =|O A|-|P B| \\
& =r \theta-r \sin \theta \\
y(\theta) & =|A C|-|B C| \\
& =r-r \cos \theta
\end{aligned}
$$

$$
x(\theta)=r(\theta-\sin \theta), y(\theta)=r(1-\cos \theta)
$$

Reall: Bracistichrone canve solver

$$
\begin{gathered}
y(x)\left(1+y^{\prime}(x)^{2}\right)=C \\
y^{\prime}=\frac{d y}{d x}=\frac{d y}{d \theta} \cdot \frac{d \theta}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{x \sin \theta}{x(1-\cos \theta)} \\
1+y^{\prime}(x)^{2}=1+\frac{\sin ^{2} \theta}{(1-\cos \theta)^{2}}=\frac{(1-\cos \theta)^{2}+\sin ^{2} \theta}{(1-\cos \theta)^{2}}
\end{gathered}
$$

$$
\begin{aligned}
x(\theta) & =r(\theta-\sin \theta), y(\theta)=r(1-\cos \theta) \\
\frac{d x}{d \theta} & =r(1-\cos \theta)=y(\theta), \frac{d y}{d \theta}=r \sin \theta \\
1+y^{\prime}(x)^{2} & =\frac{(1-\cos \theta)^{2}+\sin ^{2} \theta}{(1-\cos \theta)^{2}} \\
& =\frac{1-2 \cos \theta+\cos ^{2} \theta+\sin ^{2} \theta}{(1-\cos \theta)^{2}} \\
& =\frac{2(1-\cos \theta)}{(1-\cos \theta)^{2}}=\frac{2}{1-\cos \theta}
\end{aligned}
$$

$$
y\left(1+\left(\frac{d y}{d x}\right)^{2}\right)=\underbrace{r(1-\cos \theta)}_{y(\theta)}\left(\frac{2}{1-\cos \theta}\right)=2 r
$$

