Math 1272: Calculus II 10.3 Polar Coordinates

Instructor: Jeff Calder Office: 538 Vincent
Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/1272S19

Polar coordinates

Every point (x, y) can be described by the distance from the origin

$$
r=\sqrt{x^{2}+y^{2}}
$$

and the angle with the x-axis

$$
\theta=\tan ^{-1}\left(\frac{y}{x}\right) .
$$

The coordinates (r, θ) are called polar coordinates.

Plot the points $(1, \pi / 4),(2,3 \pi)$, and $(1,-\pi / 2)$, given in polar coordinates.

For a point (r, θ) in polar coordinates, find the corresponding cartesian coor-

$$
\begin{aligned}
& \cos \theta=\frac{x}{r} \\
& \sin \theta=\frac{y}{r}
\end{aligned}
$$

$$
x=r \cos \theta
$$

$$
y=r \sin \theta
$$

Check

$$
x^{2}+y^{2}=r^{2}, \quad \tan \theta=\frac{y}{x}
$$

Note: We can allow $r<0$ in polar coordinates. The points (r, θ) and $(-r, \theta)$ lie on the same ray with angle θ, but at anti-podal points. Plot $(-1, \pi)$ and

Note: The polar coordinate point $(-r, \theta)$ is the same as $(r, \theta \pm \pi)$.

Convert the point $(2, \pi / 3)$ from polar to cartesian coordinates.

$$
\begin{aligned}
& r=2, \quad \theta=\pi / 3 \\
& x=r \cos \theta \\
& y=r \sin \theta \\
& \theta=\tan ^{-1}\left(\frac{y}{x}\right) \\
& r=\sqrt{x^{2}+y^{2}} \\
& x=2 \cos \left(\frac{\pi}{3}\right)=2 \cdot\left(\frac{1}{2}\right)=1 \\
& y=2 \sin \left(\frac{\pi}{3}\right)=2\left(\frac{\sqrt{3}}{2}\right)=\sqrt{3}
\end{aligned}
$$

Convert the point $(1,-1)$ from cartesian to polar coordinates.

Polar curves

Curves can be represented in polar form as

$$
r=f(\theta)
$$

The curve is the set of all (r, θ) satisfying $r=f(\theta)$.

Example: What curve is represented by the equation $r=10$? How about $\theta=\pi / 4$?

Sketch the curve $r=2 \cos \theta$ and convert to cartesian coordinates.

$0 \leq \theta \leq 2 \pi$

$$
\begin{gathered}
x=r \cos \theta \\
y=r \sin \theta \quad, r=2 \cos \theta \\
x=2 \cos ^{2} \theta=1-\cos (2 \theta)
\end{gathered}
$$

$$
y=2 \cos \theta \sin \theta=\sin (2 \theta) \quad 4 \text { this identities. }
$$

$$
\begin{aligned}
x-1 & =-\cos (2 \theta)\rangle(x-1)^{2}+y^{2}=\cos ^{2}(2 \theta) \\
y & =\sin (2 \theta) \\
& +\sin ^{2}(2 \theta)=1 \\
& s_{0} \mid(x-1)^{2}+y^{2}=1
\end{aligned}
$$

2θ means circle traversed twice as $\theta: 0 \rightarrow 2 \pi$

$$
\begin{aligned}
& r=\cos (2 \theta) \quad r=f(\theta) \\
& x=r \cos (\theta) \\
& y=r \sin (\theta) \\
& x=\cos (2 \theta) \cos (\theta) \\
& y=\cos (2 \theta) \sin (\theta)
\end{aligned}
$$

The polar carne $F(r, \theta)=0$ is symmetric about the pole (rrisir) it either

$$
\begin{equation*}
F(r, \theta)=F(-r, \theta) \tag{1}
\end{equation*}
$$

or $\quad F(r, \theta)=F(r, \theta+\pi) \quad(2)$
Ex: $r=10$ satisfies (2)
$r^{2}=100$ satisfies (1) ant (z)

$$
F(r, \theta)=r-f(\theta)
$$

Symmetries in polar curves
There are three important symmetries in a polar equation $F(r, \theta)=0$.

1. If $F(r, \theta)=F(r,-\theta)$ then symmetric about $\theta=0$.
2. If $F(r, \theta)=F(-r, \theta)$ then symmetric about origin (the pole).

Symmetries in polar curves
There are three important symmetries in a polar equation $F(r, \theta)=0$.

1. If $F(r, \theta)=F(r,-\theta)$ then symmetric about $\theta=0$.
2. If $F(r, \theta)=F(-r, \theta)$ then symmetric about origin (the pole).
3. If $F(r, \theta)=F(r, \pi)$ then symmetric about axis $\theta=\pi / 2$.
$\pi-\theta$

$$
F(r, \theta)=F(r, \theta+\pi)
$$

What are the symmetries in the last example $r=\cos (2 \theta)$? Here

$$
F(r, \theta)=r-\cos (2 \theta)
$$

1. Yes Since $\cos (-2 \theta)=\cos (\theta)$.
2. No, but does satisty $F(r, \theta)=F(r, \theta+\pi)$ 3 yer since $\cos (-2(\pi-\theta))=\cos (-2 \pi+2 \theta)=\cos (-2 \theta)$.

$$
r=f(\theta)
$$

Tangents to polar curves

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}} \quad y=r \sin \theta=f(\theta) \\
& =\frac{\frac{d}{d \theta}(f(\theta) \sin \theta)}{\frac{d}{d \theta}(f(\theta) \cos \theta)} \\
\frac{d y}{d x} & =\frac{f^{\prime}(\theta) \sin \theta+f(\theta) \cos \theta}{f^{\prime}(\theta) \cos \theta-f(\theta) \sin \theta}
\end{aligned}
$$

$$
\begin{aligned}
& f(\theta) \quad f^{\prime}(\theta)=\cos \theta
\end{aligned}
$$

Find the slope of the tangent line to $r=1+\sin \theta$ when $\theta=\pi / 3$. Find points where the tangent is horizontal/vertical.

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{f^{\prime}(\theta) \sin \theta+f(\theta) \cos \theta}{f^{\prime}(\theta) \cos \theta-f(\theta) \sin \theta} \\
& \frac{d y}{d x}=\left.\frac{\cos \theta \sin \theta+(1+\sin \theta) \cos \theta}{\cos \theta \cos \theta-(1+\sin \theta) \sin \theta}\right|_{\theta=\frac{\pi}{3}}
\end{aligned}
$$

plus in $\theta=\frac{\pi}{3}, \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}$

$$
\cos \left(\frac{\pi}{3}\right)=\frac{1}{2}
$$

Horizouth ar Vertical.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\cos \theta \sin \theta+(1+\sin \theta) \cos \theta}{\cos \theta \cos \theta-(1+\sin \theta) \sin \theta} \\
& =\frac{\cos \theta(1+2 \sin \theta)}{\cos ^{2} \theta-\sin \theta-\sin ^{2} \theta} \\
\frac{d y}{d x} & =\frac{\cos \theta(1+2 \sin \theta)}{1-\sin \theta-2 \sin ^{2} \theta}
\end{aligned}
$$

$$
\frac{d y}{d x}=\frac{\cos \theta(1+2 \sin \theta)}{1-\sin \theta-2 \sin ^{2} \theta}
$$

Numerater : $\cos \theta=0$ or $\sin \theta=-\frac{1}{2}$

$$
\begin{aligned}
& \sin \left(\frac{\pi}{6}\right)=\frac{1}{2} \\
& \sin \left(-\frac{\pi}{6}\right)=-\frac{1}{2} \\
& -\frac{\pi}{6}=\frac{11 \pi}{6}
\end{aligned}
$$

Denominator: $1-\sin \theta-2 \sin ^{2} \theta=0$

$$
\begin{aligned}
& x=\sin \theta \quad 1-x-2 x^{2}=0 \\
& 2 x^{2}+x-1=0 \\
& \sin \theta=x
\end{aligned}=\frac{-1 \pm \sqrt{1+8}}{4} \quad \begin{aligned}
& =-\frac{1}{4} \pm \frac{1}{4} \sqrt{9} \\
& \\
& =-\frac{1}{4} \pm \frac{3}{4}=\frac{1}{2},-1
\end{aligned}
$$

$$
\sin \theta=\frac{1}{2} \text { or } \sin \theta=-1
$$

$\sin \theta=\frac{1}{2}$ at $\theta=\frac{\pi}{6}$ and $\theta=\pi-\frac{\pi}{6}=\frac{\pi \pi}{6}$ $\sin \theta=-1$ at $\theta=\frac{3 \pi}{2}$

At $\theta=\frac{3 \pi}{2}$, we hav $\frac{d y}{d x} \neq \frac{0}{0}$

$$
\lim _{\theta \rightarrow \frac{3 \pi}{2}} \frac{d y}{d x}=\lim _{\theta \rightarrow \frac{3 \pi}{2}} \frac{\cos \theta(1+2 \sin \theta)}{1-\sin \theta-2 \sin ^{2} \theta}
$$

$$
\begin{aligned}
& \text { l' } 1 \text { lapith }_{\prime}=\lim _{\theta \rightarrow \frac{3 \pi}{2}} \frac{\cos \theta(2 \cos \theta)-\sin \theta(1+2 \sin \theta)}{-\cos \theta-4 \sin \theta \cos \theta} \\
& \cos \left(\frac{3 \pi}{2}\right)=0 \quad \lim _{\theta \rightarrow \frac{3 \pi}{2}}-\sin \theta(1+2 \sin \theta)=-(-1)(1-2)=-1 \\
& \sin \left(\frac{3 \pi}{2}\right)=-1= \pm \infty
\end{aligned}
$$

Horizontal: $\frac{\pi}{2}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
Vertical : $\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{3 \pi}{2}$

