Math 1272: Calculus II
 10.4 Areas and lengths in polar coordinates

Instructor: Jeff Calder Office: 538 Vincent
Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/1272S19

Area in polar coordinates
Let R be the region bounded by the polar function $r=f(\theta)$ for $a \leq \theta \leq b$, and the rays $\theta=a$ and $\theta=b$. What is the area of R ?

section of a circle
Whole circle has area

$$
\pi r^{2}
$$

Section is $\frac{\theta}{2 \pi}$ fraction of circle.

Area at section $=\frac{\theta}{2 \pi} \cdot \pi r^{2}=\frac{\theta}{2} r^{2}$

Areen at a slice $\approx \frac{\Delta \theta}{2} \cdot r^{2}=\frac{\Delta \theta}{2} f(\theta)^{2}$
Breank ur $\theta=a \longrightarrow \theta=b$ into n
slices $\theta_{0}=a, \quad \theta_{n}=b, \quad \theta_{i+1}-\theta_{i}=\Delta \theta$

$$
\begin{gathered}
\Delta \theta=\frac{b-a}{n} \\
\text { Area } \simeq \sum_{i=1}^{n} \frac{\Delta \theta}{2} f\left(\theta_{i}\right)^{2} \approx \int_{a}^{b} \frac{f(\theta)^{2}}{2} d \theta
\end{gathered}
$$

Find the area enclosed by one loop of the four-leaved rose $r=\cos (2 \theta)$.

$$
\begin{gathered}
\cos ^{2} x=\frac{1}{2}(1+\cos (2 x)) \\
x=2 \theta \\
2 x=4 \theta
\end{gathered}
$$

$$
\begin{aligned}
\text { Area } & =\int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \frac{\cos ^{2}(2 \theta)}{2} d \theta \\
& =\int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \frac{1}{2} \cdot \frac{1}{2}(1+\cos (4 \theta)) d \theta
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{4}\left[\theta+\frac{1}{4} \sin (4 \theta)\right]_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \\
& =\frac{1}{4}\left(\frac{3 \pi}{4}+\frac{1}{4} \sin (3 \pi)-\frac{\pi}{4}-\frac{1}{4} \sin (\pi)\right) \\
& =\frac{1}{4}\left(\frac{\pi}{2}\right)=\frac{\pi}{8}
\end{aligned}
$$

$$
\begin{aligned}
& 2 \sin \theta \cos \theta=\sin (2 \theta) \\
& 2 \sin ^{2} \theta=1-\cos (2 \theta)
\end{aligned}
$$

Find the area of the region that lies inside the circle $r=3 \sin \theta$ and outside the cardioid $r=1+\sin \theta$.

Circle:

$$
\begin{aligned}
& x=r \cos \theta=3 \sin \theta \cos \theta \\
& =3 \cdot \frac{1}{2} \sin (2 \theta)=\frac{3}{2} \sin (2 \theta) \\
& y=r \sin \theta=3 \sin ^{2} \theta=\frac{3}{2}(1-\cos (2 \theta)) \text {. } \\
& =\frac{3}{2}-\frac{3}{2} \cos (2 \theta)
\end{aligned}
$$

$$
x^{2}+\left(4-\frac{3}{2}\right)^{2}=\left(\frac{3}{2} \sin (2 \theta)\right)^{2}+\left(-\frac{3}{2} \cos (2 \theta)\right)^{2}=\left(\frac{3}{2}\right)^{2}
$$

$$
\begin{gathered}
3 \sin \theta=1+\sin \theta \\
2 \sin \theta=1 \\
\sin \theta=\frac{1}{2} \\
\theta=\frac{\pi}{6}, \frac{5 \pi}{6}
\end{gathered}
$$

$$
\begin{aligned}
\text { Area in circle } & =\int_{\frac{\pi}{6}}^{\frac{5 \pi}{6}} \frac{(3 \sin \theta)^{2}}{2} d \theta \\
\text { Area in Cardio } & =\int_{\frac{\pi}{6}}^{\frac{5 \pi}{6}} \frac{(1+\sin \theta)^{2}}{2} d \theta \\
\text { Area between } & =\int_{\frac{\pi}{6}}^{\frac{5 \pi}{6}} \frac{1}{2}\left((3 \sin \theta)^{2}-(1+\sin \theta)^{2}\right) d \theta \\
& =\int_{\frac{\pi}{6}}^{\frac{5 \pi}{6}} \frac{1}{2}\left(9 \sin ^{2} \theta-1-2 \sin \theta-\sin ^{2} \theta\right) d \theta
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\frac{\pi}{6}}^{\frac{5 \pi}{6}} \frac{1}{2}\left(8 \sin ^{2} \theta-1-2 \sin \theta\right) d \theta \\
& =\int_{\frac{\pi}{6}}^{\frac{5 \pi}{6}} \frac{1}{2}(4-4 \cos (2 \theta)-1-2 \sin \theta) d \theta
\end{aligned}
$$

Integrate!

Arclength in polar coordinates
Consider the curve given by $r=f(\theta)$ for $a \leq \theta \leq b$. What is the arclength?

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta \\
& r=f(\theta) \\
& x=f(\theta) \cos \theta \\
& y=f(\theta) \sin \theta
\end{aligned} \quad \begin{aligned}
& x
\end{aligned} \quad \theta=b, \quad \text { Parametric equations. }
$$

Arcleogt : $\int_{a}^{b} \sqrt{\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}} d \theta$

$$
\begin{aligned}
\frac{d x}{d \theta} & =f^{\prime}(\theta) \cos \theta-f(\theta) \sin \theta \quad \text { (produtrule) } \\
\left(\frac{d x}{d \theta}\right)^{2} & =\left(f^{\prime}(\theta) \cos \theta-f(\theta) \sin \theta\right)^{2} \\
\left(\frac{d y}{d \theta}\right)^{2} & =\left(f^{\prime}\right)^{2} \cos ^{2} \theta+f^{2}(\theta) \sin \sin ^{2} \theta-2 f^{\prime} f \cos \theta \sin \theta \\
& \left.=\left(f^{\prime}\right)^{2} \sin ^{2} \theta+f^{2} \cos ^{2} \theta+2 \cos ^{\prime} f\right)^{2} \cos \theta \sin \theta \\
\left(\frac{d y}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2} & =\left(f^{\prime}\right)^{2} \cos ^{2} \theta+f^{2} \sin ^{2} \theta+\left(f^{\prime}\right)^{2} \sin ^{2} \theta+f^{2} \cos ^{2} \theta \\
& =f^{\prime}(\theta)^{2} \underbrace{\left(\cos ^{2} \theta+\sin ^{2} \theta\right)}_{=1}+f(\theta)^{2} \underbrace{\left(\cos ^{2} \theta+\sin ^{2} \theta\right)}_{=1}
\end{aligned}
$$

$$
\begin{aligned}
& =f^{\prime}(\theta)^{2}+f(\theta)^{2} \\
\frac{\text { Arcleuth }}{} & =\int_{a}^{b} \sqrt{f^{\prime}(\theta)^{2}+f(\theta)^{2}} d \theta \\
& =\int_{a}^{b} \sqrt{\left(\frac{d r}{d \theta}\right)^{2}+r^{2}} d \theta \quad \begin{array}{l}
r=f(\theta) \\
\frac{d r}{d \theta}=f^{\prime}(\theta)
\end{array}
\end{aligned}
$$

Find the arclength of the cardioid $r=1+\sin \theta$.

$$
\begin{aligned}
& \quad L=\int_{0}^{2 \pi} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta \\
& =\int_{0}^{2 \pi} \sqrt{1+\sin ^{2} \theta+2 \sin \theta+\cos ^{2} \theta} d \theta \\
& =\int_{0}^{2 \pi} \sqrt{2+2 \sin \theta} d \theta \\
& =\int_{0}^{2 \pi} \sqrt{2} \sqrt{1+\sin \theta} d \theta
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{2} \int_{0}^{2 \pi} \frac{\sqrt{1+\sin \theta} \sqrt{1-\sin \theta}}{\sqrt{1-\sin \theta}} d \theta \\
& \left.=\sqrt{2} \int_{0}^{2 \pi} \frac{\sqrt{1-\sin ^{2} \theta}}{\sqrt{1-\sin \theta}} d \theta \right\rvert\,(1+\sin \theta)(1-\sin \theta) \\
& =\sqrt{2} \int_{0}^{2 \pi} \frac{\sqrt{\cos ^{2} \theta}}{\sqrt{1-\sin \theta}} d \theta \quad \sqrt{\sin ^{2} \theta} \\
& =\sqrt{2} \int_{0}^{2 \pi} \frac{|\cos \theta|}{\sqrt{1-\sin \theta}} d \theta \quad \sqrt{(-1)^{2}}=1
\end{aligned}
$$

$$
=\sqrt{2} \int_{0}^{\pi / 2} \frac{\cos \theta}{\sqrt{1-\sin \theta}} d \theta-\sqrt{2} \int_{\frac{\pi}{2}}^{\frac{3 \pi}{2}} \frac{\cos \theta}{\sqrt{1-\sin \theta}} d \theta
$$

Substitution

$$
+\int_{\frac{3 \pi}{2}}^{2 \pi} \frac{\cos \theta}{\sqrt{1-\sin \theta}} d \theta
$$

$$
\begin{aligned}
& u=1-\sin \theta \\
& d u=-\cos \theta d \theta
\end{aligned}
$$

$$
\frac{\cos \theta d \theta}{\sqrt{1-\sin \theta}}=\frac{-d u}{\sqrt{u}}
$$

Exercise to integrate

