Math 1272: Calculus II Midterm II Review

Instructor: Jeff Calder Office: 538 Vincent
Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/1272S19

Find the tangent line to the parametric curve

$$
x=t^{2}, \quad y=t \ln (t)-t
$$

$$
\begin{aligned}
& \text { At t=2, } \begin{aligned}
& \text { at } t=2 . \\
& \frac{x_{0}}{d y}=2^{2}=4, \quad y=2 \ln (2)-2=y_{0} \\
& \frac{d y}{d t}=\frac{\frac{d}{d t}(t \ln (t)-t)}{\frac{d}{d t}\left(t^{2}\right)} \\
&=\frac{\ln (t)+\frac{t}{t}}{2 t}=\frac{\ln (t)}{2 t} \\
&\left.\frac{d y}{d x}\right|_{t=2}=\frac{\ln (2)}{4}
\end{aligned}
\end{aligned}
$$

$$
\begin{array}{rlr}
y-y_{0} & =\frac{d y}{d x}\left(x-x_{0}\right) & \begin{array}{l}
x_{0}=4 \\
y_{0}
\end{array}=2 \ln (2)-2 \\
y-(2 \ln (2)-2) & =\frac{\ln (2)}{4}(x-4) . & \frac{d y}{d x}=\frac{\ln (2)}{4} \\
y & =\frac{\ln (2)}{4}(x-4)+2 \ln (2)-2 \\
& =\frac{\ln (2)}{4} x+\ln (2)-2
\end{array}
$$

Find the solution of the differential equation

$$
\begin{aligned}
& y^{\prime}=\ln (x) y \quad \text { Separable } \\
& \frac{d y}{d x}=y^{\prime}=\ln (x) y \\
& \frac{1}{y} d y=\ln (x) d x \\
&\left.\int \frac{1}{y} d y=\int \ln (x) d x \quad \text { ISP. } \quad \begin{array}{l}
u=\ln (x) \\
d v
\end{array}\right) \\
& \ln |y|=x \ln (x)-x+C
\end{aligned}
$$

$$
\begin{aligned}
|y| & =e^{x \ln (x)-x+C} \\
& =e^{c} e^{x \ln (x)-x^{c}} \\
y & = \pm e^{c} e^{x \ln (x)-x} \\
y & =A e^{x \ln (x)-x}
\end{aligned}
$$

f_{0-} an real number A

Solve the initial value problem

$$
x^{2} y^{\prime}+2 x y=\ln x, \quad y(1)=2 .
$$

Lined: Integration factor $I(x)=e^{\int P(x) d x}$

$$
\begin{aligned}
I(x)(y^{\prime}+\underbrace{\frac{2}{x}}_{P} y) & =\frac{\ln x}{x^{2}} I(x) \quad \begin{aligned}
& y^{\prime}+P(x) y(x)=Q(x) \\
& I(x)=e^{\int \frac{2}{x} d x} \\
&=e^{2 \ln x} \\
& \underbrace{x^{2} y^{\prime}+2 x y}=\ln (x)=e^{\ln \left(x^{2}\right)}=x^{2} \\
& \frac{d}{d x}(I(x) y)=\ln (x)=\frac{d}{d x}\left(x^{2} y\right)=x^{2} y^{\prime}+2 x y
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d}{d x}\left(x^{2} y\right) & =\ln (x) \\
x^{2} y & =\int \ln (x) d x \\
x^{2} y & =x \ln (x)-x+c, \quad y(1)=2 \\
(1)^{2} \cdot 2 & =1 \ln (1)-1+c, x=1, y=2 \\
2 & =-1+c, c=3 \\
y & =\frac{\ln (x)}{x}-\frac{1}{x}+\frac{3}{x^{2}}
\end{aligned}
$$

Solve the initial value problem

Sinew:

$$
\begin{array}{rlrl}
x y^{\prime}=y+x^{2} \sin x, y(\pi)=0 . & I(x) & =e^{\int-\frac{1}{x} d x} \\
\underbrace{\prime}: \frac{1}{x} y=x \sin x, & =e^{-\ln (x)} \\
\frac{1}{x}\left(y^{\prime}-\frac{1}{x} y\right)=\sin x & & =e^{\ln \left(\frac{1}{x}\right)} \\
\frac{d}{d x}\left(\frac{1}{x} y\right)=\sin x & & =\frac{1}{x}
\end{array}
$$

$$
\frac{1}{x} y^{\prime \prime}-\frac{1}{x^{2}} y
$$

$$
\begin{aligned}
\frac{1}{x} y & =\int \sin x d x=-\cos x+C \\
y & =-x \cos x+C x, \quad y(\pi)=0 \\
0=y(\pi) & =-\pi \cos (\pi)+C \pi \\
& =\pi+C \pi, \quad c=-1 \\
y & =-x \cos x-x
\end{aligned}
$$

A tank is filled with 100L of a salt-water mixture containing 10 kg of dissolved salt Brine containing $10 \mathrm{~g} / \mathrm{L}(1000 \mathrm{~g}=1 \mathrm{~kg})$ of salt enters the tank at a rate of $1 \mathrm{~L} /$ hour. while the salt-water solution in the tank drains at a rate $f 2 \mathrm{~L} /$ hour. Write down a differential equation for the amount of salt $S(t)$ in the tank for $t \leq 100$, assuming the salt-water mixture is always kept thoroughly mixed. How much salt is remaining after 10 hours?

$$
\begin{aligned}
& \quad \frac{d S}{d t}=\text { Flow in - Flow out } \frac{\mathrm{Kg}}{\mathrm{hr}} \\
& \text { Flow in }=10 \frac{\mathrm{~g}}{\mathrm{~L}} \times 1 \frac{L}{\mathrm{~h}}=10 \frac{\mathrm{~g}}{\mathrm{hr}}=\frac{1}{100} \frac{\mathrm{~kg}}{\mathrm{hr}} \\
& \text { Amount of } \\
& \text { Water in tank }=100-t
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Comentration } \\
\text { of salt }
\end{array}=\frac{S(t)}{100-t} \frac{\mathrm{ks}}{L} \\
& \text { Flow sut }=\frac{S(t)}{100-t} \frac{\mathrm{ks}}{L} \times 2 \frac{t}{h r} \\
&=\frac{2}{100-t} S(t) \frac{\mathrm{kg}}{\mathrm{hr}} \\
& \frac{d S}{d t}=\frac{1}{100}-\frac{2}{100-t} S(t)
\end{aligned}
$$

Line

$$
\frac{d S}{d t}+\underbrace{\left(\frac{2}{100-t}\right)}_{p(t)} S(t)=\frac{1}{100}
$$

$\frac{\text { Integrating }}{\text { factor }} I(t)=e^{\int p(t) d t}$

$$
\begin{aligned}
& =e^{\int \frac{2}{100-t} d t} \\
& =e^{-2 \ln (100-t)} \\
& =e^{\ln \left(\frac{1}{(100-t)^{2}}\right)} \\
& =e^{1}(100-t)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& (\underbrace{I(t)\left(\frac{d S}{1 t}+\frac{2}{100-t} S(t)\right)}=\frac{1}{100} I(t) \\
& \int \frac{d}{d t}(I(t) S(t))=\frac{1}{100} I(t) \\
& \int \frac{d}{d t}\left(\frac{S(t)}{(100-t)^{2}}\right) d t=\int \frac{1}{10(100-t)^{2}} d t \\
& \frac{S(t)}{(100-t)^{2}}=\frac{1}{100(100-t)}+C
\end{aligned}
$$

$$
\begin{aligned}
& S(t)=\frac{100-t}{100}+C(100-t)^{2} \\
& 10=S(0)=\frac{100}{100}+C(100)^{2} \\
& =1+C 100^{2} \\
& C=\frac{9}{100^{2}} \\
& S(t)=1-\frac{t}{100}+\frac{9}{100^{2}}(100-t)^{2}
\end{aligned}
$$

$$
S(t)=1-\frac{t}{100}+9\left(1-\frac{t}{100}\right)^{2}
$$

After 10 hows

$$
\begin{aligned}
S(10) & =1-\frac{10}{100}+9\left(1-\frac{10}{100}\right)^{2} \\
& =0.9+9(0.9)^{2}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d}{d t} \frac{1}{100-t} & =-(100-t)^{-2} \cdot(-1) \\
& =\frac{1}{(100-t)^{2}} \\
\int \frac{1}{(100-t)^{2}} d t & =-\int \frac{1}{u^{2}} d u \\
u=100-t \mid & =\frac{1}{u}+C \\
d u=-d t \mid & =\frac{1}{100-t}+C
\end{aligned}
$$

Find the area of the region enclosed by one loop of the curve

$$
r=10 \sin (\pi \theta)
$$

Lop goes from

$$
\begin{array}{r}
\sin (\underset{\sim}{\pi}-1): 0 \\
\pi \theta: 0 \\
\pi=0 \\
\theta: 0
\end{array}
$$

$$
\text { Area }=\int_{0}^{1} \frac{1}{2} r^{2} d \theta=\int_{0}^{1} \frac{1}{2}(12 \sin (\pi \theta))^{2} d \theta
$$

$$
\begin{aligned}
& =\operatorname{so} \int_{0}^{1} \sin ^{2}(\pi \theta) d \theta \\
& =50 \int_{0}^{1} \frac{1}{2}-\frac{1}{2} \cos (2 \pi \theta) d \theta \\
& =25 \int_{0}^{1} 1-\cos (2 \pi \theta) d \theta \quad \begin{array}{l}
u=2 \pi \theta \\
\\
\left.=25\left(\theta-\frac{\sin (2 \pi+\theta)}{2 \pi}\right)\right]_{0}^{1} d u=2 \pi d \theta
\end{array} \\
& =25
\end{aligned}
$$

$$
\nabla s_{\text {mall }}=10 \text { bees }
$$

A population of honeybees grows at a rate of 10 bees per hour when the population is small. The hive can contain at most 1000 bees. Use a logistic differential equation to model the honeybee population $P(t)$. If the populadion starts with 10 honeybee, how many bees will there be after 10 hours.

$$
\begin{aligned}
& \text { Losistic } \quad \frac{d P}{\partial t}=k P\left(1-\frac{P}{M}\right) \\
& M=\text { capacity }=1000 \text { bees. }
\end{aligned}
$$

For smell population $\frac{d p}{d t} \approx K P$

$$
10 \frac{\text { bees }}{\mathrm{hr}}=k \underbrace{k \cdot 10 \text { bees }}_{\square k=1}
$$

$$
\left.\begin{array}{rl}
10 \frac{\text { bees }}{h_{r}} & =k \cdot 10\left(1-\frac{10}{1000}\right) \\
1 & =k\left(1-\frac{1}{100}\right)=K \frac{99}{100} \\
D K=\frac{100}{99}
\end{array}\right] \begin{aligned}
& \frac{d P}{d t}=P\left(1-\frac{P}{1000}\right), P(0)=10
\end{aligned}
$$

$$
P(t)=\frac{1000}{1+99 e^{-t}}
$$

At $t=10$ hours

$$
\begin{aligned}
A & =\frac{1000-10}{10} \\
& =\frac{990}{10}
\end{aligned}
$$

$$
P(10)=\frac{100^{\circ}}{1+99 e^{-10}}
$$

Find $d y / d x$ and $d^{2} y / d x^{2}$ for the parametric curve

$$
x=t^{3}+1, y=t^{2}-t .
$$

For which values of t is the curve concave upward?

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{\frac{d}{d t}\left(t^{2}-t\right)}{\frac{d}{d t}\left(t^{3}+1\right)}=\frac{2 t-1}{3 t^{2}} \\
& \frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}=\frac{\frac{d}{d t}\left(\frac{2 t-1}{3 t^{2}}\right)}{3 t^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{3 t^{2} \cdot 2-(2 t-1) 6 t}{\left(3 t^{2}\right)^{2}} \\
& 3 t^{2} \\
& =\frac{6 t^{2}-12 t^{2}+6 t}{\left(3 t^{2}\right)^{3}} \\
& =\frac{6 t-6 t^{2}}{27 t^{6}}=\frac{6}{27}\left(\frac{1-t}{t^{5}}\right) \\
& \frac{d^{2} 4}{d t^{2}}=\frac{2}{9}\left(\frac{1-t}{t^{5}}\right)
\end{aligned}
$$

Find the surface area obtained by rotating the curve

$$
x=t^{3}, y=t^{2}, \quad 0 \leq t \leq 1
$$

about the x-axis.

$$
\begin{aligned}
S & =\int_{x(0)}^{x(1)} 2 \pi y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x, \quad x=x(t) \\
& =\int_{0}^{1} 2 \pi y \sqrt{1+\left(\frac{y^{\prime}(t)}{x^{\prime}(t)}\right)^{2}} x^{\prime}(t) d t \\
& =\int_{0}^{1} 2 \pi y(t) \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t
\end{aligned}
$$

$$
\begin{aligned}
x^{\prime}(t)=3 t^{2}, \quad \begin{array}{l}
y^{\prime}(t) \\
y(t)
\end{array}=2 t
\end{aligned} \quad \begin{aligned}
y^{2}
\end{aligned} \quad \begin{aligned}
1 & =\int_{0}^{1} 2 \pi t^{2} \sqrt{\left(3 t^{2}\right)^{2}+(2 t)^{2}} d t \\
& =\int_{0}^{1} 2 \pi t^{2} \sqrt{9 t^{4}+4 t^{2}} d t \\
& =\int_{0}^{1} 2 \pi t^{3} \sqrt{9 t^{2}+4} d t \\
& =\int_{0}^{1} 2 \pi t t^{2} \sqrt{9 t^{2}+4} d t, \left\lvert\, \begin{array}{l}
u=9 t^{2}+4 \\
d u=18 t d t
\end{array}\right.
\end{aligned}
$$

$$
\left(\begin{array}{rl}
9 t^{2} & =u-4 \\
t^{2}=\frac{u-4}{9} \\
= & \int_{4}^{13} 2 \pi\left(\frac{u-4}{9}\right) \sqrt{u} \frac{d u}{18} \\
= & \frac{\pi}{81} \int_{4}^{13} \sqrt{u}(u-4) d u \\
= & \frac{\pi}{81} \int_{4}^{13} u^{3 / 2}-4 u^{1 / 2} d u
\end{array}\right.
$$

$$
\begin{aligned}
& =\frac{\pi}{21}\left[\frac{2}{5} u^{5 / 2}-4 \cdot \frac{2}{3} u^{3 / 2}\right]_{4}^{13} \\
& \infty 00
\end{aligned}
$$

Find the arclength of the curve

$$
x=1+3 t^{2}, \quad y=4+2 t^{3}, \quad 0 \leq t \leq 1
$$

Find the arclength of the polar curve

$$
\begin{aligned}
L & =\int_{0}^{2 \pi} \sqrt{r^{2}+\left(\frac{d r}{d r}\right)^{2}} d \theta \\
& =\int_{0}^{2 \pi} \sqrt{4(1+\cos \theta)^{2}+(-2 \sin \theta)^{2}} d \theta \\
& =\int_{0}^{2 \pi} \sqrt{4\left(1+2 \cos \theta+\cos ^{2} \theta\right)+4 \sin ^{2} \theta} d \theta \\
& =\int_{0}^{2 \pi} \sqrt{8+8 \cos \theta} d \theta
\end{aligned}
$$

$$
000
$$

