Math 1272: Calculus II 11.1 Sequences

Instructor: Jeff Calder Office: 538 Vincent
Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/1272S19

Sequences

A sequence is a (possibly infinite) list of numbers

$$
a_{1}, a_{2}, a_{2}, \ldots, a_{n}, \ldots
$$

Notation: $\left\{a_{1}, a_{2}, a_{3}, \ldots\right\},\left\{a_{n}\right\}$ or $\left\{a_{n}\right\}_{n=1}^{\infty}$.

Examples

1. $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}=\{1,1 / 2,1 / 3, \ldots\}$.
2. $\left\{p_{n}\right\}$ where p_{n} is the population of the world on Jan 1 in year n
3. Fibonacci sequence

$$
\{1,1,2,3,5,8,13,21, \ldots\}
$$

Limits

A sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ has a limit L, which we write as

$$
\lim _{n \rightarrow \infty} a_{n}=L
$$

or $a_{n} \rightarrow L$ as $n \rightarrow \infty$, if we can make the terms a_{n} as close to L as we like by taking n large.

Examples

1. The sequence $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$ has limit $L=0$ as $n \rightarrow \infty$ (converges)
2. Fibonacci sequence

$$
\{1,1,2,3,5,8,13,21, \ldots\}
$$

does not have a limit as $n \rightarrow \infty$. (diverges)
3. What about $\{1,-1,1,-1,1,-1,1,-1, \ldots\}$? (converges/diverges?)

Definition of Limit
We say $\lim _{n \rightarrow \infty} a_{n}=L$ if for every $\varepsilon>0$ there exists $N \geq 1$ such that

$$
\left|a_{n}-L\right|<E
$$

for all $n \geq N$.

Diverging to ∞

While the Fibonacci sequence

$$
\{1,1,2,3,5,8,13,21, \ldots\}
$$

is divergent, it increases monotonically without bound. Such sequences diverge to ∞ :

Definition: We say $\lim _{n \rightarrow \infty} a_{n}=\infty$ if for every large $M>0$ there is an integer N such that

$$
\text { if } n>N \text { then } a_{n}>M \text {. }
$$

Rules for limits

$$
a_{n}=\{1,-1,1,-1,1,-1, \ldots\}
$$

If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ ar convergent then

$$
\begin{aligned}
& b_{n}=\{-1,1,-1,1,-1,1, \ldots\} . \\
& n+\lim _{n \rightarrow \infty} b_{n}
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n} \\
& \lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}-\lim _{n \rightarrow \infty} b_{n} \\
& \lim _{n \rightarrow \infty} c a_{n}=c \lim _{n \rightarrow \infty} a_{n} \\
& \lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=\lim _{n \rightarrow \infty} a_{n} \cdot \lim _{n \rightarrow \infty} b_{n} \\
& \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}} \text { if } \lim _{n \rightarrow \infty} b_{n} \neq 0 \\
& \lim _{n \rightarrow \infty} a_{n}^{p}=\left[\lim _{n \rightarrow \infty} a_{n}\right]^{p} \quad \text { if } p>0 \text { and } a_{n}>0
\end{aligned}
$$

Useful theorems

Squeeze theorem:
If $a_{n} \leq b_{n} \leq c_{n}$ and $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L$, then $\lim _{n \rightarrow \infty} b_{n}=L$.

Absolute values:
If $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$.

Find $\lim _{n \rightarrow \infty} \frac{n}{n-\pi}$.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{n}{n-\pi} \frac{\frac{1}{n}}{\frac{1}{n}} \\
= & \lim _{n \rightarrow \infty} \frac{1}{\left.1-\frac{\pi}{n}\right)}=0 \\
= & \frac{\lim _{n \rightarrow \infty} 1}{\lim _{n \rightarrow \infty}\left(1-\frac{\pi}{n}\right)}=\frac{1}{1}=1
\end{aligned}
$$

Is the sequence $a_{n}=\frac{n^{2}}{n+1}$ convergent divergent?
(1) Note $a_{n}=\frac{n^{2}}{n+1} \geq \frac{n^{2}}{n+n}=\frac{n^{2}}{2 n}=\frac{n}{2}$

Since $\lim _{n \rightarrow \infty} n=\infty, \lim _{n \rightarrow \infty} a_{n}=\infty$
(2) $\quad a_{n}=\frac{n}{1+\frac{1}{n}} \quad \lim _{n \rightarrow \infty} n=\infty$

Evaluate $\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{n}$ if it exists. , $a_{n}=\frac{(-1)^{n}}{n}$

$$
\begin{aligned}
& -1, \frac{1}{2},-\frac{1}{3}, \frac{1}{4},-\frac{1}{5}, \frac{1}{6}, \cdots \\
& \left|a_{n}\right|=\frac{1}{n} \text { and } \lim _{n \rightarrow \infty} \frac{1}{n}=0 \\
& \lim _{n \rightarrow \infty}\left|a_{n}\right|=0 \Longrightarrow \lim _{n \rightarrow \infty} a_{n}=0
\end{aligned}
$$

Calculate $\lim _{n \rightarrow \infty} \frac{\ln n}{n}$.
1 'Hipich
It

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\ln x}{x} & =\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{1} \\
& =\lim _{x \rightarrow \infty} \frac{1}{x}=0
\end{aligned}
$$

Differcue $n=1,2,3,4, \ldots$
x amy number.

Last example used the following fact:

If $\lim _{x \rightarrow \infty} f(x)=L$ and $f(n)=a_{n}$ for n an integer, then $\lim _{n \rightarrow \infty} a_{n}=L$.

Last example used the following fact:

If $\lim _{x \rightarrow \infty} f(x)=L$ and $f(n)=a_{n}$ for n an integer, then $\lim _{n \rightarrow \infty} a_{n}=L$.
\rightarrow Replace n by x ant use I'Hospital
Another useful fact:

If $\lim _{n \rightarrow \infty} a_{n}=L$ and $f(x)$ is continuous at L, then

$$
\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f(L)
$$

Limits commute with continuous functions
$\sin (x)$ is contincous at $L=0$
So

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sin \left(\frac{\pi}{n}\right) & =\sin \left(\lim _{n \rightarrow \infty} \frac{\pi}{n}\right) \\
& =\sin (0)=0
\end{aligned}
$$

For what values of r is $\left\{r^{n}\right\}$ convergent? $\quad r>0$

$$
\left\{r^{n}\right\}_{n=1}^{\infty}=\left\{r, r^{2}, r^{3}, r^{4}, r^{s}, \ldots\right\}
$$

$$
r^{n}=e^{\ln \left(r^{n}\right)}=e^{n \ln (v)}=e^{k n}, k=\ln (v)
$$

What is $\quad \lim _{n \rightarrow \infty} e^{k n} ? \quad \frac{d P}{d t}=k P$

$$
n=t
$$

∞ if $k>0$
0 if $k<0$

$$
\begin{array}{ccc}
\downarrow & \downarrow \\
\ln (r)>0 & & \ln (n)<0 \\
\downarrow & \downarrow \\
r>1 & & 0<r<1 \\
\lim _{n \rightarrow \infty} r^{n}=0 & \text { if } & 0<r<1 \\
\lim _{n \rightarrow \infty} r^{n}=\infty & \text { if } & r>1 \\
\lim _{n \rightarrow \infty} r^{n}=1 & \text { if } & r=1
\end{array}
$$

$\lim _{n \rightarrow \infty} r^{n}=0 \quad$ if $\quad|r|<1$.
It $r=-1$, diverges.
TA $r<-1$, diverges.
Convergent for $-1<r \leq 1$

Monotonic sequences

A sequence is increasing if

$$
a_{1}<a_{2}<a_{3}<a_{4}<a_{5}<\cdots
$$

and decreasing if

$$
a_{1}>a_{2}>a_{3}>a_{4}>a_{5}>\cdots
$$

A sequence is monotonic if it is either increasing or decreasing.

Example: $\left\{\frac{2}{2+n}\right\}$ is decreasing.

Bounded sequences

A sequence is bounded above if there is some number M so that

$$
a_{n} \leq M \text { for all } n \geq 1
$$

A sequence is bounded below if there is some number m so that

$$
a_{n} \geq m \text { for all } n \geq 1 .
$$

A sequence is bounded if it is bounded above and below.

Fact: Every monotonic and bounded sequence is convergent.

Consider the sequence defined by the recurrance relation

$$
a_{1}=2 \text { and } a_{n+1}=\frac{1+a_{n}}{2} .
$$

Show that the sequence $\left\{a_{n}\right\}$ is convergent. What is the limit?
It $a_{n} \leq 2$ then $a_{n+1}=\frac{1+a_{n}}{2} \leq \frac{1+2}{2}=\frac{3}{2} \leq 2$ induction $\leadsto a_{n} \leq 2$ for all n.

If $a_{n} \geq 1$ then $a_{n+1}=\frac{1+a_{n}}{2} \geq \frac{1+1}{2}=1$ induction $\rightarrow a_{n} 21$
So $\quad 1 \leq a_{n} \leq 2$ for all

Hence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is bounded.
Claim: a_{n} decreasing.

$$
a_{2}=\frac{1+a_{1}}{2}=\frac{1+2}{2}=\frac{3}{2} \leq 2=a_{1}
$$

If $a_{n-1} \geq a_{n}$ then

$$
a_{n+1}=\frac{1+a_{n}}{2} \leq \frac{1+a_{n-1}}{2}=a_{n}
$$

induction $\sim D a_{n}$ decreasing.
$\left\{a_{n}\right\}_{n=1}^{s}$ is decreasing ant bounded, hem it converges. Write

$$
\begin{aligned}
L & =\lim _{n \rightarrow \infty} a_{n} \\
& =\lim _{n \rightarrow \infty} \frac{1+a_{n-1}}{2} \\
& =\frac{1+\lim _{n \rightarrow \infty} a_{n-1}}{2}=\frac{1+L}{2}
\end{aligned}
$$

$$
\begin{aligned}
L & =\frac{1+L}{2} \\
2 L & =1+L \wedge D
\end{aligned}
$$

