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Sequences

A sequence is a (possibly infinite) list of numbers

a1, a2, a2, . . . , an, . . .

Notation: {a1, a2, a3, . . . }, {an} or {an}∞n=1.

Examples

1.
{

1
n

}∞
n=1

= {1, 1/2, 1/3, . . . }.

2. {pn} where pn is the population of the world on Jan 1 in year n

3. Fibonacci sequence

{1, 1, 2, 3, 5, 8, 13, 21, . . . }.



Limits

A sequence {an}∞n=1 has a limit L, which we write as

lim
n→∞

an = L

or an → L as n → ∞, if we can make the terms an as close to L as we like
by taking n large.
Examples

1. The sequence { 1n}
∞
n=1 has limit L = 0 as n→∞ (converges)

2. Fibonacci sequence

{1, 1, 2, 3, 5, 8, 13, 21, . . . }

does not have a limit as n→∞. (diverges)

3. What about {1,−1, 1,−1, 1,−1, 1,−1, . . . }? (converges/diverges?)
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Diverging to ∞
While the Fibonacci sequence

{1, 1, 2, 3, 5, 8, 13, 21, . . . }

is divergent, it increases monotonically without bound. Such sequences di-
verge to ∞:

Definition: We say limn→∞ an = ∞ if for every large M > 0 there is an
integer N such that

if n > N then an > M.



Rules for limits

If {an} and {bn} are convergent then

lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn

lim
n→∞

(an − bn) = lim
n→∞

an − lim
n→∞

bn

lim
n→∞

can = c lim
n→∞

an

lim
n→∞

(anbn) = lim
n→∞

an · lim
n→∞

bn

lim
n→∞

an
bn

=
lim
n→∞

an

lim
n→∞

bn
if lim

n→∞
bn 6= 0

lim
n→∞

apn =
[
lim
n→∞

an

]p
if p > 0 and an > 0.
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Useful theorems

Squeeze theorem:
If an ≤ bn ≤ cn and limn→∞ an = limn→∞ cn = L, then limn→∞ bn = L.

Absolute values:
If limn→∞ |an| = 0, then limn→∞ an = 0.
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Find limn→∞
n

n−π .
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Is the sequence an = n2

n+1 convergent or divergent?
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Evaluate limn→∞
(−1)n
n if it exists.
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Calculate limn→∞
lnn
n .
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Last example used the following fact:

If limx→∞ f(x) = L and f(n) = an for n an integer, then limn→∞ an = L.



Last example used the following fact:

If limx→∞ f(x) = L and f(n) = an for n an integer, then limn→∞ an = L.

Another useful fact:

If limn→∞ an = L and f(x) is continuous at L, then

lim
n→∞

f(an) = f(L).

Jeffrey

Jeffrey



Find limn→∞ sin(π/n).
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For what values of r is {rn} convergent?
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Monotonic sequences

A sequence is increasing if

a1 < a2 < a3 < a4 < a5 < · · ·

and decreasing if
a1 > a2 > a3 > a4 > a5 > · · ·

A sequence is monotonic if it is either increasing or decreasing.

Example: { 2
2+n} is decreasing.



Bounded sequences

A sequence is bounded above if there is some number M so that

an ≤M for all n ≥ 1.

A sequence is bounded below if there is some number m so that

an ≥ m for all n ≥ 1.

A sequence is bounded if it is bounded above and below.

Fact: Every monotonic and bounded sequence is convergent.
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Consider the sequence defined by the recurrance relation

a1 = 2 and an+1 =
1 + an

2
.

Show that the sequence {an} is convergent. What is the limit?
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