Math 1272: Calculus II 11.3 The integral test

Instructor: Jeff Calder Office: 538 Vincent
Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/1272S19

Harmonic series
Let us return to the harmonic series

In general

$$
\begin{aligned}
S_{n}=\sum_{i=1}^{n} \frac{1}{i} & \geq \int_{1}^{n+1} \frac{1}{x} d x \\
& =\left.\ln (x)\right|_{1} ^{n+1} \\
& =\ln (n+1) \frac{n}{\infty}>\infty
\end{aligned}
$$

Hene $\sum_{n=1}^{\infty} \frac{1}{n}$ diveres.

Let's consider a general series

$$
\sum_{n=1}^{\infty} a_{n} \quad \text { where } a_{n}=f(n)
$$

and f is positive an decreasing.
By above argument

$$
S_{n}=\sum_{i=1}^{n} a_{i} \geq \int_{1}^{n+1} f(x) d x
$$

In general $s_{n}=\sum_{i=1}^{n} a_{i} \leq \int_{0}^{n} f(x) d x$

$$
\int_{1}^{n+1} f(x) d x \leq S_{n} \leq \int_{0}^{n} f(x) d x
$$

Integral test

If f is continuous, positive, and decreasing, and $a_{n}=f(n)$, then $\sum a_{n}$ is convergent if and only if $\int_{1}^{\infty} f(x) \overline{d x}$ is convergent.

- If $\int_{1}^{\infty} f(x) d x$ is convergent then $\sum_{n=1}^{\infty} a_{n}$ is convergent.
- If $\int_{1}^{\infty} f(x) d x$ is divergent then $\sum_{n=1}^{\infty} a_{n}$ is divergent.

Warning: In general, the integral and sum do not give the same value, so

$\int_{N}^{\infty} f(x) d x$

$$
\int_{1}^{\infty} f(x) d x \neq \sum_{n=1}^{\infty} a_{n} .
$$

Test the series \sum

$f(x)=\frac{1}{x^{2}+1}$. Intesoal test

$$
\begin{aligned}
& \int_{1}^{\infty} \frac{1}{x^{2}+1} d x=\lim _{T \rightarrow \infty} \int_{1}^{T} \frac{1}{x^{2}+1} d x \\
&\left.=\lim _{T \rightarrow \infty} \arctan (x)\right]_{1}^{T} \\
&=\lim _{T \rightarrow \infty} \arctan (T)-\operatorname{arcta}(1) \\
&=\operatorname{an}^{-1} \\
&=\frac{\pi}{2}-\frac{\pi}{4}=\frac{\pi}{4}
\end{aligned}
$$

$$
\begin{array}{r}
\tan \theta=\frac{b}{a} \\
\theta=\tan ^{-1}\left(\frac{b}{a}\right) \\
\theta=\tan ^{-1}(x) \\
x=\frac{b}{a}
\end{array}
$$

$$
f(x)=\frac{1}{x P}
$$

For what values of p does $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converge?
By integral test, compar with $\int_{1}^{\infty} \frac{1}{x^{3}} d x$

$$
\int_{1}^{\infty} \frac{1}{x^{p}} d x \text { converges for } p>1 \quad \text { (p-test) }
$$

Jivergal for $p \leq 1$
Same is true for $\sum \frac{1}{n p}$.
($p=1$) Harmonic series $\sum \frac{1}{n}$ divers.

Estimating the sum of a series

Suppose we have a convergent series

$$
\begin{aligned}
s=\sum_{n=1}^{\infty} a_{n} .=a_{1}+a_{2}+\cdots & +a_{n}+a_{n+1} \\
& +a_{n+2}+\cdots
\end{aligned}
$$

We can approximate the sum s with the partial sum

$$
s_{n}=\sum_{i=1}^{n} a_{i} .=a_{1}+a_{2}+\cdots+a_{n}
$$

The remainder (or error) is

$$
R_{n}=s-s_{n}=\sum_{i=n+1}^{\infty} a_{i}=a_{n+1}+a_{n+2}+a_{n+3}+\cdots
$$

Question: How accurate is the approximation (how large is R_{n})?

$$
R_{n}=S-S_{n}=a_{n+1}+a_{n+2}+a_{n+3}+\cdots .
$$

$$
f(n)=a_{n}
$$

Estimates on the remainder

Suppose $a_{k}=f(k)$, where f is continuous, positive, and decreasing for $x \geq n$, and $s=\sum a_{k}$ is convergent. Then the remainder $R_{n}=s-s_{n}$ satisfies

$$
\int_{n+1}^{\infty} f(x) d x \leq R_{n} \leq \int_{n}^{\infty} f(x) d x
$$

How many terms, n, are required to approximate $s=\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ by the partial sum

$$
s_{n}=\sum_{k=1}^{n} \frac{1}{k^{2}} \quad \text { want }
$$

with an error less than 0.001 ?

$$
R_{n}=S-S_{n} \leqslant 0.001
$$

By therein

$$
\begin{aligned}
R_{n} & \leq \int_{n}^{\infty} \frac{1}{x^{2}} d x \\
& =\lim _{T \rightarrow \infty} \int_{n}^{T} \frac{1}{x^{2}} d x \\
& \left.=\lim _{T \rightarrow \infty}-\frac{1}{x}\right]_{n}^{T}
\end{aligned}
$$

$$
\begin{aligned}
&=\lim _{T \rightarrow \infty}\left(\frac{1}{n}-\frac{1}{T}\right) \\
&=\frac{1}{n} \leq 0.001 \\
& \text { want } \\
& \frac{1}{n} \leq 0.001=\frac{1}{1000} \\
& \frac{1000}{n} \leq 1 \text { or } n \geq 1000
\end{aligned}
$$

