Math 1272: Calculus II
 11.4 The comparison tests

Instructor: Jeff Calder Office: 538 Vincent
Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/1272S19

Series $\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+a_{4}+\cdots+a_{n}+a_{n+1}+\cdots$
Series converses if the sequence af partial sum,

$$
s_{n}=a_{1}+a_{2}+\cdots+a_{n}=\sum_{i=1}^{n} a_{i}
$$

Converges. $\left(\lim _{n \rightarrow \infty} S_{n}=S\right)$. We write

$$
S=\sum_{n=1}^{\infty} a_{n} \quad\left(\begin{array}{cc}
M_{0 s}+l_{y} & a_{n}>0 \\
\text { today }
\end{array}\right) .
$$

We know the harmonic series

$$
\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots
$$

diverges. How about

$$
\sum_{n=1}^{\infty} \frac{1}{n+1}, \quad \sum_{n=1}^{\infty} \frac{n}{n^{2}+n+1}, \quad \text { or } \quad \sum_{n=2}^{\infty} \frac{1}{n-1} ?
$$

We know the geometric series

$$
\sum_{n=1}^{\infty} \frac{1}{2^{n}}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots
$$

$$
r=\frac{1}{2}<1
$$

converges. How about

$$
\sum_{n=1}^{\infty} \frac{1}{2^{n}+1}, \quad \sum_{n=1}^{\infty} \frac{n}{2^{n}} \quad \text { or } \sum_{n=1}^{\infty} \frac{1}{2^{n}-1}
$$

Comparison test
Suppose $\sum a_{n}$ and $\sum b_{n}$ are series with positive terms. Then

- If $\sum b_{n}$ is convergent and $a_{n} \leq b_{n}$ for all n, then $\sum a_{n}$ is also convergent.
- If $\sum b_{n}$ is divergent and $a_{n} \geq b_{n}$ for all n, then $\sum a_{n}$ is also divergent.

$$
\begin{aligned}
& \sum a_{n}=a_{1}+a_{2}+a_{3}+\cdots \\
& \sum b_{n}=b_{1}+b_{2}+b_{3}+\cdots
\end{aligned}
$$

Note: The conditions $a_{n} \leq b_{n}$ or $a_{n} \geq b_{n}$ need only hold for $n \geq N$ for some inced, possibly large N.
Generally compare against $\sum \frac{1}{n p}$ or $\sum r^{n}$

$$
p>1
$$

$$
\hat{\imath}|r|<1
$$

cone.

Determine whether the series

$$
\underbrace{\sum_{n=1}^{\infty} \frac{5}{2 n^{2}+4 n+3}}_{a_{n} \approx \frac{5}{2 n^{2}}}=\frac{5}{2} \frac{1}{n^{2}}
$$

$$
a_{n}=\frac{5}{2 n^{2}+4 n+z} \leq \frac{5}{2 n^{2}}=\text { bn for all } n \geq 1
$$

$\sum b_{n}$ converges by p-test $(p=2>1)$
\Longrightarrow Ian convers by comparison test.

Example: Determine conversen / dives of

$$
\sum_{n=1}^{\infty} \frac{n+1}{n^{3}+2 n+3}
$$

$\frac{n+1}{n^{3}+2 n+3} \approx \frac{n}{n^{3}}=\frac{1}{n^{2}}$ for large n.
Compare against $\sum \frac{1}{n^{2}}$, which converges.
$\frac{n+1}{n^{3}+2 n+3} \leq \frac{n+1}{n^{3}} \leq \frac{n+n}{n^{3}}=\frac{2 n}{n^{3}}=\frac{2}{n^{2}}$
By comparison, series converges.

$$
p=2>1
$$

Test

$$
\sum_{n=1}^{\infty} \underbrace{\sum_{n}}_{a_{n}}, 0
$$

for convergence/divergence.

$$
\begin{aligned}
\text { If } \quad \begin{aligned}
& \ln (n) \geq 1 \\
& \downarrow \\
& n \geq e^{1} \leq 3
\end{aligned} \quad \text { then } \frac{\ln (n)}{n} \geq \frac{1}{n} \\
\end{aligned}
$$

It $n \geq 3$ then $a_{n}=\frac{\ln (n)}{n} \geq \frac{1}{n}=b_{n}$
Sun Ebu diverges (Harmonic series) Eau diverser by Comparison.

Limit comparison test
Suppose $\sum a_{n}$ and $\sum b_{n}$ are series with positive terms. If

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c
$$

where c is a finite and positive number $(c>0)$, then either both series

$$
\begin{gathered}
E x: \sum_{n}^{\text {converge or both diverge. }} \frac{n+1}{n^{3}+2 n+3} \quad a_{n}=\frac{n+1}{n^{3}+2 n+3}, \quad b_{n}=\frac{1}{n^{2}} \\
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{n+1}{n^{3}+2 n+3}\left(n^{2}\right)=\lim _{n \rightarrow \infty} \frac{n^{3}+n^{2}}{n^{3}+2 n+3} \frac{\left(\frac{1}{n^{3}}\right)}{\left(\frac{1}{n^{3}}\right)} \\
=\lim _{n \rightarrow \infty} \frac{1+\frac{1}{n}}{1+\frac{2}{n^{2}}+\frac{3}{n^{3}}}=\frac{1}{11} \rightarrow \text { converges. }
\end{gathered}
$$

It $b_{n}=\frac{1}{n^{3}}, \quad \frac{a_{n}}{b_{n}}=\frac{(n+1)\left(n^{3}\right)}{n^{3}+2 n+3} \rightarrow \infty$

$$
b_{n}=\frac{1}{n^{1.5}}, \frac{a_{n}}{b_{n}}=\frac{(n+1)\left(n^{1.5}\right)}{n^{3}+2 n+3} \rightarrow 0
$$

Determine whether the series

$$
\sum_{n=1}^{\infty} \frac{4 n^{2}-2 n}{\sqrt{1+2 n^{5}}}
$$

converges or diverges.

$$
\frac{4 n^{2}-2 n}{\sqrt{1+2 n^{5}}} \approx \frac{4 n^{2}}{\sqrt{2 n^{5}}}=\frac{4}{\sqrt{2}} \frac{n^{2}}{n^{2.5}}
$$

Series looks like $\sum \frac{1}{n^{p}}, p=0.5=\frac{4}{\sqrt{2}} \frac{1}{\sqrt{n}}$

$$
a_{n}=\frac{4 n^{2}-2 n}{\sqrt{1+2 n^{5}}}, b_{n}=\frac{1}{n^{0.5}}
$$

\rightarrow Should diverge.

$$
p \leq 1 \text { div. }
$$

$$
p>1 \text { conk. }
$$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n}}{b n} & =\lim _{n \rightarrow \infty} \frac{4 n^{2}-2 n}{\sqrt{1+2 n^{5}}} \cdot n^{0.5} \\
& =\lim _{n \rightarrow \infty} \frac{4 n^{2.5}-2 n^{1.5}}{\sqrt{1+2 n^{5}}} \frac{\left(\frac{1}{n^{2.5}}\right)}{\left(\frac{1}{n^{2.5}}\right)} \\
& =\lim _{n \rightarrow \infty} \frac{4-\frac{2 /}{n}}{\sqrt{\frac{1}{n^{0}}+2}}=\frac{4}{\sqrt{2}}>0
\end{aligned}
$$

$\sin u \sum \frac{1}{n^{0.5}}$ diveras $(p-$ test $)$
Ean diverger.

$$
\text { Test } \begin{aligned}
& \sum_{n=1}^{\infty} \frac{\sqrt{n^{2}+4}}{n^{3}+2 n^{2}+4}
\end{aligned} \underbrace{\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}}_{b_{n}}=\begin{aligned}
& \lim _{n \rightarrow \infty}=\frac{\sqrt{n^{2}}}{n^{3}}=\frac{n}{n^{3}}=\frac{1}{n^{2}+2 n^{2}+4} \\
& \\
& \\
& =\lim _{n \rightarrow \infty}^{n^{2} \sqrt{n^{2}+4}} \frac{\left(\frac{1}{n^{3}}\right)}{\left(\frac{1}{n^{3}}\right)} \\
& \\
& \\
& =\lim _{n \rightarrow \infty} \frac{\frac{1}{n}+\frac{1}{n^{3}}}{\frac{1+\sqrt{n^{2}+4}}{\frac{2}{n}+\frac{4}{n^{3}}}} \frac{1}{\sqrt{1+\frac{4}{n^{2}}}}=\frac{1}{\sqrt{n^{2}}}
\end{aligned}
$$

Siñ pil, converger.
By comparisou

$$
\begin{aligned}
\frac{\sqrt{n^{2}+4}}{n^{3}+2 n^{2}+4} \leq \frac{\sqrt{n^{2}+4 n^{2}}}{n^{3}} & =\frac{\sqrt{5 n^{2}}}{n^{3}} \\
& =\sqrt{5} \frac{n}{n^{3}}=\frac{\sqrt{5}}{n^{2}}
\end{aligned}
$$

converser by comparison.

Estimating sums

Use the sum of the first 100 terms to approximate the sum of the series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}+2}
$$

Estimate the error involved in the approximation.

Estimating sums
Use the sum of the first 100 terms to approximate the sum of the series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}+2} . \quad a_{n}=\frac{1}{n^{2}+2} \leq \frac{1}{n^{2}}
$$

Estimate the error involved in the approximation. A computer program produce

$$
\sum_{n=1}^{100} \frac{1}{n^{2}+2}=0.8510785905657153
$$

Accuracy/Error? $R_{10 n}=$ remained \sim

$$
\begin{aligned}
R_{100}=\sum_{n=1}^{\infty} a_{n}-\sum_{n=1}^{100} a_{n} & =\sum_{n=101}^{\infty} a_{n} \\
& =a_{101}+a_{102}+a_{103}+\cdots
\end{aligned}
$$

$$
\begin{aligned}
R_{100} \leq \sum_{n=101}^{\infty} \frac{1}{n^{2}} & \leq \int_{100}^{\infty} \frac{1}{x^{2}} d x \\
& \left.=-\frac{1}{x}\right]_{100}^{\infty} \lim _{T \rightarrow \infty} \\
& =\frac{1}{100}
\end{aligned}
$$

