Math 1272: Calculus II
 11.9 Representing functions via power series

Instructor: Jeff Calder Office: 538 Vincent
Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/1272S19

Power series as functions

We recall the geometric series

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots=\sum_{n=0}^{\infty} x^{n} . \quad|x|<1
$$

We treat the power series as a representation of the function

$$
f(x)=\frac{1}{1-x} .
$$

The partial sums approximate f, i.e.,

$$
f(x) \approx \sum_{n=0}^{N} x^{n}
$$

for large N.

Express $1 /\left(1+x^{3}\right)$ as a sum of a power series and find the interval of convergence.

$$
\begin{aligned}
& \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} \quad|x|<1 \\
& \frac{1}{1+x^{3}}=\frac{1}{1-\left(-x^{3}\right)}=\sum_{n=0}^{\infty}\left(-x^{3}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{3 n}
\end{aligned}
$$

(onnerge) for $\left|-x^{3}\right|<1 \leadsto|x|<1$ diverge for $|x| \geq 1 \quad R=1=$ Radius Interval of conc. $(-1,1)$.

Find a power series representation for $1 /(x+5)$.

$$
\begin{aligned}
\frac{1}{1-x} & =\sum_{n=0}^{\infty} x^{n},|x|<1 \\
\frac{1}{x+5}=\frac{1}{5} \cdot \frac{1}{1+\frac{x}{5}} & =\frac{1}{5} \frac{1}{1-\left(-\frac{x}{5}\right)} \\
& =\frac{1}{5} \sum_{n=0}^{\infty}\left(-\frac{x}{5}\right)^{n}, \\
& \left.=\frac{1}{5} \sum_{n=0}^{\infty} \frac{-x}{5} \right\rvert\,<1 \\
\frac{(-1)^{n} x^{n}}{5^{n}}, & |x|<5
\end{aligned}
$$

Differentiation and Integration of Power Series

Let $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ be a power series with radius of convergence $R>0$. Then

$$
\frac{d}{d x}\left[\sum_{n=0}^{\infty} c_{n}(x-a)^{n}\right]=\sum_{n=0}^{\infty} \frac{d}{d x} c_{n}(x-a)^{n}=\sum_{n=1}^{\infty} n c_{n}(x-a)^{n-1}
$$

and

$$
\int\left[\sum_{n=0}^{\infty} c_{n}(x-a)^{n}\right]=\sum_{n=0}^{\infty} \int c_{n}(x-a)^{n}=C+\sum_{n=0}^{\infty} c_{n} \frac{(x-a)^{n+1}}{n+1}
$$

within the radius of convergen $|x-a|<R$.

Find a power series representation for $1 /(1-x)^{2}$. What is the radius of convergence?

$$
\begin{aligned}
& \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}, \quad|x|<1 \\
& \frac{d}{d x} \frac{1}{1-x}=\sum_{n=0}^{\infty} \frac{d}{d x} x^{n}=\frac{d}{d x}\left(1+x+x^{2}+\cdots\right) \\
& \frac{1}{(1-x)^{2}}=\sum_{n=1}^{\infty}-n x^{n-1}=-\left(1+2 x+3 x^{2}+\cdots\right) \\
& \quad|x|<1
\end{aligned}
$$

$$
R=1=\text { Radius of convergem }
$$

Find a power series representation for $\ln (1+x)$. What is the radius of convergence?

$$
\begin{aligned}
\frac{d}{d x} \ln (1+x) & =\frac{1}{1+x} \\
\ln (1+x) & =\int \frac{1}{1+x} d x \\
& =\int \frac{1}{1-(-x)} d x \\
& =\int \sum_{n=0}^{\infty}(-x)^{n} d x \quad|x|<1 \\
& =\sum_{n=0}^{\infty} \int(-1)^{n} x^{n} d x
\end{aligned}
$$

$$
\begin{aligned}
& \ln (1+x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1} \quad|x|<1 \\
& \ln (2)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1}, x=1 \\
& \ln (2)=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\cdots
\end{aligned}
$$

\uparrow Conditionally convergent

Conditional convergence: By the last example we have

$$
\begin{aligned}
& \ln 2=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\cdots \\
& \frac{1}{2} \ln (2)=\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+\frac{1}{10}-\frac{1}{12}+\frac{1}{14}-\frac{1}{16}+\cdots \\
& \frac{1}{2} \ln (2)=0+\frac{1}{2}+0-\frac{1}{4}+0+\frac{1}{6}+0-\frac{1}{8}+0+\frac{1}{10}+\cdots \\
& \ln (2)=1-\frac{1}{2}+\frac{1}{7}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\frac{1}{9}-\frac{1}{10}+\cdots \\
&=1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\cdots
\end{aligned}
$$

$$
\begin{aligned}
& \quad \frac{7}{7}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\frac{1}{9} \\
& \quad=\ln (2) \text { nb } \frac{3}{2} \ln (2)=\ln (2)+\cdots \\
& 3=2 .
\end{aligned}
$$

Find a power series representation for $\tan ^{-1}(1-x)$. What is the radius of convergence? $\tan ^{-1}(x)$

$$
\begin{aligned}
\frac{d}{d x} \tan ^{-1}(x) & =\frac{1}{1+x^{2}} \quad \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n},|x|<1 \\
\tan ^{-1}(x) & =\int \frac{1}{1+x^{2}} d x \\
& =\int \frac{1}{1-\left(-x^{2}\right)} d x \\
& =\int \sum_{n=0}^{\infty}\left(-x^{2}\right)^{n} d x \sim D\left|-x^{2}\right|<1 \\
& =\int \sum_{n=0}^{\infty}(-1)^{n} x^{2 n} d x
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{n=0}^{\infty}(-1)^{n} \int x^{2 n} d x \\
\tan ^{-1}(x) & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}, \quad|x|<1=R . \\
& =x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\frac{x^{9}}{9}-\cdots
\end{aligned}
$$

Evaluate

$$
\int \frac{1}{1+x^{7}} d x
$$

as a power series.

$$
\begin{array}{rlrl}
\int \frac{1}{1+x^{7}} d x & =\int \frac{1}{1-\left(-x^{7}\right)} d x & & 1-x^{2} \mid<1 \\
& =\int \sum_{n=0}^{\infty}\left(-x^{7}\right)^{n} d x & & |x|<1 \\
& =\sum_{n=0}^{\infty}(-1)^{n} \int x^{7 n} d x & & -1<x<1 \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{7 n+1}}{7 n+1} &
\end{array}
$$

