Math 1272: Calculus II 11.10 Taylor Series

Instructor: Jeff Calder Office: 538 Vincent
Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/1272S19

Representing functions as power series
Given an arbitrary function $f(x)$, can we find a power series representation
(*) $f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}$? $\quad C_{n}=$?

$$
f(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}+\cdots
$$

If $(*)$ holds then $f(0)=C_{0}!=1$

$$
\begin{aligned}
& f^{\prime}(x)=C_{1}+2 C_{2} x+3 C_{3} x^{2}+4 C_{4} x^{3} \\
& f^{\prime}(0)=C_{1}=\frac{f^{\prime}(0)}{1}
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime \prime}(x)=2 C_{2}+3 \cdot 2 C_{3} x+4.3 C_{4} x^{2}+5 \cdot 4 C_{5} x^{3}+\cdots \\
& f^{\prime \prime}(0)=2 C_{2} \leadsto C_{2}=\frac{f^{\prime \prime}(0)}{2 \cdot 1} \\
& f^{\prime \prime \prime}(x)=3.2 C_{3}+4.3 .2 C_{4} x+5 \cdot 4 \cdot 3 C_{5} x^{2}+\cdots \\
& f^{\prime \prime \prime}(0)=3.2 C_{3} \leadsto C_{3}=\frac{f^{\prime \prime \prime}(0)}{3.2 .1} \\
& f^{(4)}(x)=4.3 .2 C_{4}+5.4 .3 .2 C_{5} x+\cdots \\
& f^{(4)}(0)=4.3 .2 C_{4} \leadsto D C_{4}=\frac{f^{(4)}(0)}{4.3 .2 .1}
\end{aligned}
$$

$$
f^{(5)}(0)=5 \cdot 4 \cdot 3 \cdot 2 C_{5} \Leftrightarrow c_{5}=\frac{f^{(5)}(0)}{5 \cdot 4 \cdot 3 \cdot 2.1}
$$

General formula

$$
\begin{gathered}
C_{n}=\frac{f^{(n)}(0)}{n!} \\
n!=1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots(n-1) \cdot n
\end{gathered}
$$

Theorem If f has a power series representation at a

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}, \quad|x-a|<R
$$

then

$$
c_{n}=\frac{f^{(n)}(a)}{n!}
$$

The representation

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}, \quad|x-a|<R
$$

is called the Taylor series of f centered at a.

When $a=0$ it is often called the Maclaurin series.

$$
a=0
$$

Example Find the Maclaurin series for $f(x)=e^{x}$, and the radius of convergence.

$$
\begin{aligned}
\text { for all } n \geq 0, & f^{(n)}(x)
\end{aligned}=e^{x}, ~ \begin{aligned}
f^{(n)}(0) & =e^{0}=1
\end{aligned}
$$

Maclawin series $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}$

Maclavrin Series for e^{x} is $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$

Ratio test: $a_{n}=\frac{x^{n}}{n!}, \frac{1}{\left|a_{n}\right|}=\frac{n!}{|x|^{n}}$

$$
\begin{aligned}
& L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \\
&=\lim _{n \rightarrow \infty} \frac{|x|^{n+1}}{(n+1)!} \frac{n!}{|x|^{n}}=\frac{|x|^{n+1}}{(n+1)!} \\
&=\lim _{n \rightarrow-} \frac{n!}{(n+1)!}|x| \\
& \frac{n!}{(n+1)!}=\frac{1 \cdot 2 \cdot 7 \cdot 4 n}{2 \cdot 3 \cdot 4 \cdots(n+1)} \quad \lim _{n \rightarrow \infty} \frac{|x|}{n+1}=0 \\
& \quad \text { Converges for all }
\end{aligned}
$$

Converges for all x

Example
Maclaurin Series $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}$

$$
f(x)=e^{-\frac{1}{x^{2}}} \quad(f(0)=0)
$$

Fact: $f^{(n)}(0)=0$ for all $n \geq 0$
Maclaurin Series for $f(x)$ is $\sum_{n=0}^{\infty} \frac{0 x^{n}}{n!}=0$
Maclavin Series does $n_{2} t$ converge to $f(x)$ for $x \neq 0$.

Convergence of Taylor series to $f(x)$

To examine convergence of Taylor series to $f(x)$, we consider the partial sums

$$
T_{n}(x)=\sum_{i=0}^{n} \frac{f^{(i)}(a)}{i!}(x-a)^{i}, \quad n=0
$$

and remainder

$$
T_{0}(x)=f(a)
$$

$$
\begin{array}{cc}
R_{n}(x)=f(x)-T_{n}(x) . & n=1 \\
f(x)=T_{n}(x)+R_{n}(x) & T_{1}(x)=f(a)+f^{\prime}(a)(x-a)
\end{array}
$$

The Taylor series converges to $f(x)$ if

$$
\lim _{n \rightarrow \infty} T_{n}(x)=f(x) \quad \text { or } \quad \lim _{n \rightarrow \infty} R_{n}(x)=0
$$

Question: How can we show that $R_{n} \rightarrow 0$?

Fundamental Theorem

$$
\begin{aligned}
& \int_{a}^{x} f^{\prime}(t) d t=f(x)-f(a) \\
& f(x)=f(a)+\int_{0}^{\int_{a}^{x} f^{\prime}(t) d t} \\
& =\underbrace{\int_{a}^{x} f^{\prime}(t) d t}_{R_{0}(x)}
\end{aligned}
$$

Assume $\left|f^{\prime}(t)\right| \leq M$ for $|t-a| \leq|x-a|$

Then $\left|R_{0}(x)\right|=\left|\int_{a}^{x} f^{\prime}(t) J t\right|, x>a$

$$
\begin{aligned}
& \leq \int_{a}^{x} \underbrace{\left|f^{\prime}(t)\right| d t}_{\leq M} \\
& \leq M \int_{a}^{x} d t=M(x-a) \\
&=M|x-a|
\end{aligned}
$$

we have

$$
\begin{gathered}
f(x)=f(a)+\int_{a}^{x} f^{\prime}(t) d t \\
\int_{a}^{t} f^{\prime \prime}(s) d s=f^{\prime}(t)-f^{\prime}(a) \\
f^{\prime}(t)=f^{\prime}(a)+\int_{a}^{t} f^{\prime \prime}(s) d s \\
f(x)=f(a)+\int_{a}^{x}\left[f^{\prime}(a)+\int_{a}^{t} f^{\prime \prime}(s) d s\right] d t
\end{gathered}
$$

$$
\begin{aligned}
& =f(a)+\int_{a^{a}}^{x} f^{\prime}(a) d t+\int_{a}^{x} \int_{a}^{t} f^{\prime \prime}(s) d s d t \\
& =f(a)+f^{\prime}(a) \int_{a}^{x} d t+\int_{a}^{\int_{a}^{x} \int_{a}^{t} f^{\prime \prime}(s) d s d t} \\
& =\underbrace{f(a)+f^{\prime}(a)(x-a)}_{\text {argent line }=T_{1}(x)}+\underbrace{\int_{a}^{x} \int_{a}^{t} f^{\prime \prime}(s) d s d t}_{R_{1}(x)}
\end{aligned}
$$

Assume $\quad\left|f^{\prime \prime}(s)\right| \leq M$ for $|s-a| \leq|x-a|$

Then

$$
\begin{aligned}
\left|R_{1}(x)\right| & \leq M \int_{a}^{x} \int_{a}^{t} \frac{1}{t} d s d t, \quad \begin{array}{l}
x>a \\
t>a
\end{array} \\
& =M \int_{a}^{x}(t-a) d t \\
& \left.=M \frac{1}{2}(t-a)^{2}\right]_{a}^{x} \\
& =\frac{M}{2}(x-a)^{2}
\end{aligned}
$$

Taylor's inequality
If $\left|f^{(n+1)}\right| \leq M$ for $|x-a| \leq d$, then the remainder $R_{n}(x)$ of the Taylor series satisfies the inequality

$$
\left|R_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-a|^{n+1} \quad \text { for }|x-a|<d
$$

Prat by induction.

$$
M=M(n)
$$

$$
\begin{gathered}
f(x)=e^{x} \\
e^{x} \text { is equal to its Maclaurin series. }
\end{gathered} f^{(n)}(x)=e^{x}, ~(x)=1
$$

Exercise: Prove that e^{x} is equal to its Maclaurin series.
Madaurin series $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
If $|x| \leq d,-d \leq x \leq d$, the

$$
\begin{array}{r}
\left|f^{(n+1)}(x)\right|=e^{x} \leq e^{d}=M \\
\left|R_{n}(x)\right| \leq \frac{M}{(n+1)!}|x|^{n+1}=\frac{e^{d}|x|^{n+1}}{(n+1)!}
\end{array}
$$

Consider $\sum_{n=0}^{\infty} \frac{|x|^{n}}{n!}$. Ratio test

$$
\lim _{n \rightarrow \infty} \underbrace{\lim _{n \rightarrow \infty} \frac{|x|}{n+1}=0<1 \text {, } 10<1}_{\underbrace{\frac{|x|^{n+1}}{(n+1)!}}_{\left|\frac{a_{n+1}}{a_{n}}\right|} \frac{n!}{|x|^{n}}}=0
$$

\rightarrow Series converge bi Rato test

$$
\longrightarrow \quad \lim _{n \rightarrow \infty} \frac{|x|^{n}}{n!}=0 \leftrightarrow \lim _{n \rightarrow \infty} R_{n}(x)=0
$$

Hence $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad$ for all x
Recall, $f(x)=e^{-\frac{1}{x^{2}}}=\sum_{n=0}^{\infty} \frac{\left(-\frac{1}{x^{2}}\right)^{n}}{n!} \quad f_{u n}$

$$
e^{-\frac{1}{x^{2}}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!x^{2 n}} \quad x \neq 0
$$

$\uparrow_{\text {Lament series }}$
"Taylor series centers at $x=\infty$ "

Exercise: Find the Taylor series for $f(x)=e^{x}$ at $a=2$.

$$
C_{n}=\frac{f^{(n)}(a)}{n!}=\frac{e^{a}}{n!}
$$

$$
a=2
$$

Taylor series is $\sum_{n=0}^{\infty} C_{n}(x-a)^{n}=\sum_{n=0}^{\infty} \frac{e^{a}(x-a)^{n}}{n!}$

$$
e^{x}=e^{a} e^{x-a}=e^{a} \sum_{n=0}^{\infty} \frac{(x-a)^{n}}{n!}
$$

already proves converges

Exercise: Find the Maclaurin series for $\sin x$ and prove that it represents $\sin x$ for all x.

$$
\begin{aligned}
& C_{n}=\frac{f^{(n)}(0)}{n!}, f(x)=\sin (x) . \\
& f^{(0)}(0)=f(0)=\sin (0)=0, \quad f(x)=\sin (x) \\
& f^{(1)}(0)=\cos (0)=1, \\
& f^{(2)}(0)=-\sin (0)=0, \\
& f^{\prime(3)}(0)=-\cos (0)=-1 \\
& f^{\prime(4)}(0)=\sin (0)=0,0 \cos (x) \\
& f^{\prime \prime}(x)=-\sin (x) \\
& f^{(3)}(x)=-\cos (x) \\
& f^{(4)}(x)=\sin (x)
\end{aligned}
$$

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=f(0) & +f^{\prime}(0) x+\frac{1}{2!} f^{\prime \prime}(0) x^{2} \\
& +\frac{1}{3!} f^{(\prime \prime}(0) x^{3}+\frac{1}{4!} f^{(4)} /(0) x^{4}
\end{aligned}
$$

$\substack{\text { Series }}$	$\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$

Does this converge to $\sin (x)$?
Answer: Yes, since $\left|f^{(n)}(x)\right| \leq 1=\mu$

$$
\begin{aligned}
& \text { So }\left|R_{n}(x)\right| \leq \frac{M|x|^{n+1}}{(n+1)!}=\frac{|x|^{n+1}}{(n+1)!} \\
& \rightarrow \lim _{n \rightarrow \infty} R_{n}(x)=0 \\
& \sin (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}
\end{aligned}
$$

Exercise: Find the Maclaurin series for $\cos x$.
Since $\frac{d}{d x} \sin x=\cos x$

$$
\begin{aligned}
\cos x & =\frac{d}{d x} \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}(2 n+1) x^{2 n}}{(2 n+1)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} \\
(2 n+1)! & =1 \cdot 2 \cdot 3 \cdot 4 \cdots(2 n)(2 n+1)=(2 n)!(2 n+1)
\end{aligned}
$$

Ex: Prone $e^{i x}=\cos x+i \sin x \quad\binom{$ Euler i }{ Formula }
using Maclaurin series for

$$
e^{i x}, \cos x, \sin x
$$

Exercise: Find the Maclaurin series for $f(x)=(1+x)^{k}$, where k is any real number.

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}
$$

$$
\begin{aligned}
& f(0)=1 \\
& f^{\prime}(x)=k(1+x)^{k-1} \sim D \quad f^{\prime}(0)=k \\
& f^{\prime \prime}(x)=k(k-1)(1+x)^{k-2} \sim D f^{\prime \prime}(0)=k(k-1) . \\
& f^{\prime \prime \prime}(x)=k(k-1)(k-2)(1+x)^{k-3} \sim D f^{\prime \prime \prime}(0)=k(k-1)(k-2) \\
& f^{(4)}(x)=k(k-1)(k-2)(k-3)(1+x)^{k-4} n=4 \\
& n \rightarrow(4)=(0)=k(k-1)(k-2)(k-3)
\end{aligned}
$$

In general $f^{(n)}(0)=k(k-1)(k-2) \cdots(k-(n-1))$
Maclaurin series for $(1+x)^{k}$ is

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \underbrace{n!}_{\binom{k}{n}:=\frac{k(k-1)(k-2) \cdots(k-(n-1))}{n!} x^{n}} \\
= & \sum_{n=0}^{\infty}\binom{k}{n} x^{n} \quad \text { (Binominal series). }
\end{aligned}
$$

Exercise: Find the Maclaurin series for $f(x)=\frac{1}{\sqrt{4-x}}$ and its radius of

$$
\text { convergence. } \begin{aligned}
& (1+x)^{k}=\sum_{n=0}^{\infty}\binom{k}{n} x^{n} \quad(\text { Binowion series) } \\
\frac{1}{\sqrt{4-x}} & \left.=\frac{1}{\sqrt{4}} \cdot \frac{1}{\sqrt{1-\frac{x}{4}}}=\frac{1}{2}\left(1+\left(-\frac{x}{4}\right)\right)\right)^{-\frac{1}{2}} \\
& =\frac{1}{2} \sum_{n=0}^{\infty}\binom{-\frac{1}{2}}{n}\left(-\frac{x}{4}\right)^{n} \\
& =\frac{1}{2} \sum_{n=0}^{\infty}(-1)^{n}\binom{-\frac{1}{2}}{n} \frac{x^{n}}{4^{n}}
\end{aligned}
$$

$$
\begin{aligned}
\binom{-\frac{1}{2}}{n} & =-\frac{1}{2}\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right) \cdots \underbrace{2}_{-\frac{1-2 n+2}{\left(-\frac{1}{2}-(n-1)\right)}}=-\left(\frac{2 n-1}{2}\right) \\
& =\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right) \cdots\left(-\left(\frac{2 n-1}{2}\right)\right) \\
& =(-1)^{n} \frac{3 \cdot 5 \cdot 7 \cdots(2 n-1)}{2^{n}}
\end{aligned}
$$

Exercise: Evaluate $\int_{0}^{1} e^{-x^{2}} d x$ as an infinite series. $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$

$$
\begin{aligned}
\int_{0}^{1} e^{-x^{2}} d x & =\int_{0}^{1} \sum_{n=0}^{\infty} \frac{\left(-x^{2}\right)^{n}}{n!} d x \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \int_{0}^{1} x^{2 n} d x \\
& \left.=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \frac{x^{2 n+1}}{2 n+1}\right]_{0}^{1} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \cdot \frac{1}{2 n+1}
\end{aligned}
$$

Multiplication and division of power series
Find a power series representation for $e^{x} \sin x$.

$$
\begin{gathered}
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\cdots \\
\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{6}+\frac{x^{5}}{5!}+\cdots \\
e^{x} \sin x=1 \cdot x-1 \cdot \frac{x^{3}}{6}+\cdots+x^{2}-\frac{x^{4}}{6}+\cdots \\
\\
+\frac{x^{3}}{2}+\cdots
\end{gathered}
$$

$$
\begin{gathered}
=x+x^{2}-\frac{x^{3}}{6}+\frac{x^{3}}{2}+\cdots \\
=x+x^{2}+\frac{1}{3} x^{3}+\cdots \\
\left(\sum a_{n} x^{n}\right)\left(\sum b_{n} x^{n}\right) \neq \sum a_{n} b_{n} x^{2 n} \\
\left(a_{1}+a_{2} x\right)\left(b_{1}+b_{2} x\right)=a_{1} b_{1}+a_{2} b_{2} x^{2} \\
+a_{1} b_{2} x+a_{2} b_{1} x
\end{gathered}
$$

$$
\Delta=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} a_{k} b_{n-k}\right) x^{n}
$$

