Math 1272: Calculus II
 12.1 Three dimensional coordinate systems

Instructor: Jeff Calder Office: 538 Vincent
Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/1272S19

3D space
Every point P in 3D space is represented in rectangular (cartesian) coordinates by three numbers

- $a=x$-coordinate
- $b=y$-coordinate
- $z=z$-coordinate

Surfaces

Surfaces in \mathbb{R}^{3} are defined by equations involving x, y, z. For example

$$
y=5
$$

refers to the set of all points (x, y, z) with $y \neq 5$. Thi is the plane.

Example: Sketch the curve/surface

$$
x=y
$$

Example: What curve/surface is described by

$$
x^{2}+y^{2}=1
$$

in \mathbb{R}^{2} and \mathbb{R}^{3} ? Circe

\mathbb{R}^{2}
cylinder

Example: What curve/surface is described by

$$
x^{2}+y^{2}=1
$$

in \mathbb{R}^{2} and \mathbb{R}^{3} ?

Question: What is the distance between a point $P=(x, y, z)$ and the origin $(0,0,0)$ in \mathbb{R}^{3} ?

$$
\begin{gathered}
l^{2}=x^{2}+y^{2} \\
d^{2}=l^{2}+z^{2} \\
d^{2}=x^{2}+y^{2}+z^{2} \\
d=\sqrt{x^{2}+y^{2}+z^{2}}
\end{gathered}
$$

Distance formula

The distance between the points $P_{1}=\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}, z_{2}\right)$ is

$$
\left|P_{1} P_{2}\right|=\sqrt[\underbrace{\left(x_{2}-x_{1}\right)^{2}}_{x^{2}}]{ } \underbrace{\left(y_{2}-y_{1}\right.}_{y^{2}})^{2}+\underbrace{\left(z_{2}-z_{1}\right)^{2}}_{z^{2}} .
$$

Example: Find the distance between $(2,-1,7)$ and $(1,-3,5)$.

$$
\begin{aligned}
d & =\sqrt{(2-1)^{2}+(-1-(-3))^{2}+(7-5)^{2}} \\
& =\sqrt{1^{2}+2^{2}+2^{2}}=\sqrt{9}=3
\end{aligned}
$$

Exercise: What is the equation for a sphere with radius r centered at (h, k, l) ?

Sphere is all (x, y, z) such that

$$
\begin{aligned}
& \sqrt{(x-h)^{2}+(y-k)^{2}+(z-l)^{2}}=r \\
& \left(\begin{array}{l}
(x-h)^{2}+(y-k)^{2}+(z-l)^{2}
\end{array}=r^{2}\right. \\
& \begin{aligned}
x^{2}-2 x h+h^{2}+y^{2}-2 k y & +k^{2}+z^{2}-2 l z \\
& +l^{2}=r^{2}
\end{aligned}
\end{aligned}
$$

Exercise: Show that

$$
x^{2}+y^{2}+z^{2}+4 x-6 y+2 z+6=0
$$

is the equation for a sphere, and find the center and radius.
Complete the square:

$$
\begin{aligned}
& x^{2}+4 x=(x+2)^{2}-4 \\
& y^{2}-6 y=(y-3)^{2}-9 \\
& z^{2}+2 z=(z+1)^{2}-1 \\
& (x+2)^{2}+(y-3)^{2}+(z+1)^{2}-14+6=0
\end{aligned}
$$

$$
(x+2)^{2}+(y-3)^{2}+(z+1)^{2}=8=r^{2}
$$

Sphere of radius $r=\sqrt{8}$ centered at $(-2,3,-1)$.

