Math 1272: Calculus II 12.2 Vectors

Instructor: Jeff Calder
Office: 538 Vincent
Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/1272S19

Vectors

Definition: A vector is a quantity (such as displacement or force) that has both magnitude and direction.

Vectors

Definition: A vector is a quantity (such as displacement or force) that has both magnitude and direction.

A vector a in \mathbb{R}^{3} is represented by coordinates as

$$
\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle
$$

- The length (magniutude) of \mathbf{a} is

$$
|\mathbf{a}|=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}} .
$$

- The direction of \mathbf{a} is the unit vector

$$
\hat{\mathbf{a}}=\frac{\mathbf{a}}{|\mathbf{a}|} .
$$

Definition: Given points $A=\left(x_{1}, y_{1}, z_{1}\right)$ and $B=\left(x_{2}, y_{2}, z_{2}\right)$, the vector a from A to B is

$$
\mathbf{a}=\overrightarrow{A B}=\left\langle x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right\rangle
$$

- The direction of a points from A to B.
- The magnitude of \mathbf{a} is the distance from A to B.

Operations with vectors

Addition and subtraction: If $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\mathbf{b}=\left(\phi_{q}, b_{2}, b_{3}\right)$ then

$$
\begin{aligned}
& \mathbf{a}+\mathbf{b}=\left\langle a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}\right\rangle \\
& \mathbf{a}-\mathbf{b}=\left\langle a_{1}-b_{1}, a_{2}-b_{2}, a_{3}-b_{3}\right\rangle .
\end{aligned}
$$

Scalar multiplication: If $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\lambda \in \mathbb{R}$ then

$$
\lambda \mathbf{a}=\left\langle\lambda a_{1}, \lambda a_{2}, \lambda a_{3}\right\rangle .
$$

Exercise: Show that $\overrightarrow{A B}+\overrightarrow{B C}=\overrightarrow{A C}$.

$$
\begin{aligned}
\vec{A} & =\left(a_{1}, a_{2}, a_{3}\right), B=\left(b_{1}, b_{3}, k_{3}\right) \\
C & =\left(c_{1}, c_{2}, c_{3}\right) \\
\overrightarrow{A B} & =\left\langle b_{1}-a_{1}, b_{2}-a_{2}, b_{3}-a_{3}\right\rangle \\
\overrightarrow{B C} & =\left\langle c_{1}-b_{1}, c_{2}-b_{2}, c_{2}-b_{3}\right\rangle \\
\overrightarrow{A B}+\overrightarrow{B C} & =\left\langle c_{1}-a_{1}, c_{2}-a_{2}, c_{7}-a_{2}\right\rangle \\
& =\overrightarrow{A C} .
\end{aligned}
$$

Illustration of adding vectors

$$
\vec{c}=\vec{a}+\vec{b}
$$

Illustration of scalar multiplication

$$
\vec{a}=\left\langle a_{1}, a_{2}, a_{7}\right\rangle \quad, \quad \lambda \vec{a}=\left\langle\lambda a_{1}, \lambda a_{2}, \lambda a_{3}\right\rangle
$$

Vector spaces and properties of vectors

The set of all n-dimensional vectors of the form

$$
\mathbf{a}=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle
$$

is denoted V_{n}.

If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are vectors in V_{n} and c, d are scalars then

$$
\begin{aligned}
\mathbf{a}+\mathbf{b} & =\mathbf{b}+\mathbf{a} \\
\mathbf{a}+\mathbf{0} & =\mathbf{a} \\
c(\mathbf{a}+\mathbf{b}) & =c \mathbf{a}+c \mathbf{b} \\
(c d) \mathbf{a} & =c(d \mathbf{a})
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{a}+(\mathbf{b}+\mathbf{c}) & =(\mathbf{a}+\mathbf{b})+\mathbf{c} \\
\mathbf{a}+(-\mathbf{a}) & =\mathbf{0} \\
(c+d) \mathbf{a} & =c \mathbf{a}+d \mathbf{a} \\
1 \mathbf{a} & =\mathbf{a} .
\end{aligned}
$$

Here $\mathbf{0}=\langle 0,0, \ldots, 0\rangle$.

Standard basis vectors

The standard basis vectors in \mathbb{R}^{3} are

$$
\mathbf{i}=\langle 1,0,0\rangle, \mathbf{j}=\langle 0,1,0\rangle, \quad \text { and } \mathbf{k}=\langle 0,0,1\rangle .
$$

Every vector in \mathbb{R}^{3} can be expressed in terms of $\mathbf{i}, \mathbf{j}, \mathbf{k}$:

$$
\begin{aligned}
& \mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle=\underbrace{a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k} .} \\
& \underbrace{a_{1}(1,0,0\rangle+a_{2}}\left\langle\begin{array}{rl}
& \langle 0,1,0)
\end{array}\right. \\
&+a_{3}(0,0,1\rangle
\end{aligned}
$$

Exercise: If $\mathbf{a}=\mathbf{i}+2 \mathbf{j}-3 \mathbf{k}$ and $\mathbf{b}=4 \mathbf{i}+7 \mathbf{k}$, express $2 \mathbf{a}+3 \mathbf{b}$ in terms of $\mathbf{i}, \mathbf{j}, \mathbf{k}$.

$$
\begin{aligned}
2 \vec{a}+3 \vec{b} & =2(\hat{i}+2 \hat{j}-3 \hat{k})+3(4 \hat{i}+7 \hat{k}) \\
& =14 \hat{i}+4 \hat{j}+15 \hat{k} \\
& =\langle 14,4,15\rangle
\end{aligned}
$$

Unit vectors
A unit vector is a vector whose length is 1 . The standard basis vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are unit vectors.

$$
\begin{aligned}
\hat{i}=\langle 1,0,0\rangle, \quad|\hat{i}| & =\sqrt{1^{2}+0^{2}+0^{2}}=1 \\
|\hat{j}| & =1, \quad|\hat{k}|=1
\end{aligned}
$$

Exercise: Find a unit vector in the direction of the vector $2 \mathbf{i}-\mathbf{j}-2 \mathbf{k}$.

$$
\begin{aligned}
& |\vec{a}|=\sqrt{2^{2}+(-1)^{2}+(-2)^{2}}=\sqrt{q}=3 \\
& \hat{a}=\frac{\vec{a}}{|\vec{a}|}=\frac{1}{3}(2 \hat{i}-\hat{j}-2 \hat{k})=\frac{2}{3} \hat{i}-\frac{1}{3} j-\frac{2}{3} \hat{k}
\end{aligned}
$$

$$
\begin{aligned}
& T_{1}=\frac{\sqrt{3}}{2}\left|T_{1}\right| \hat{i}+\frac{\left|T_{1}\right|}{2} \hat{j} \\
& T_{2}=-\frac{\left|T_{2}\right|}{2} \hat{i}+\frac{\sqrt{3}}{2}\left|T_{2}\right| \hat{j} \\
& T_{1}+T_{2}+F_{3}=0
\end{aligned}
$$

$$
F_{g}=-m g \hat{j}
$$

$$
T_{1}=\langle a, b\rangle
$$

$$
\left|T_{1}\right|=\sqrt{a^{2}+b^{2}}
$$

$$
T_{2}=\langle c, d\rangle
$$

$$
\begin{aligned}
& (\underbrace{\left(\frac{\sqrt{3}}{2}\left|T_{1}\right|-\frac{\left|T_{2}\right|}{2}\right)}_{=0} \hat{i}+\underbrace{\left(\frac{\left|T_{1}\right|}{2}+\frac{\sqrt{3}}{2}\left|T_{2}\right|-m g\right)}_{=0}) \hat{j}=0 \\
& \sqrt{3}\left(\sqrt{3}\left|T_{1}\right|-\left|T_{2}\right|\right)=0 \\
& +{\left|T_{1}\right|+\sqrt{3}\left|T_{2}\right|=2 m g}_{4\left|T_{1}\right|=2 m g \rightarrow \frac{m g}{2}}^{\left|\left|T_{1}\right|=\frac{m}{2}\right.}+\frac{\left|T_{2}\right|=\sqrt{3}\left|T_{1}\right|=\frac{\sqrt{3}}{2} m g}{}
\end{aligned}
$$

