Math 1272: Calculus II 12.3 The Dot Product

Instructor: Jeff Calder Office: 538 Vincent

Email: jcalder@umn.edu
http://www-users.math.umn.edu/~jwcalder/1272S19

The dot product

Definition: The dot product between vectors $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\mathbf{b}=$ $\left\langle b_{1}, b_{2}, b_{3}\right\rangle$ is defined as

$$
\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} .
$$

Exercise: Compute the dot product between $\mathbf{a}=\langle 1,2,3\rangle$ and $\mathbf{b}=\langle-1,0,1\rangle$.

$$
\begin{aligned}
\vec{a} \cdot \vec{b} & =1 \cdot(-1)+2 \cdot(0)+3 \cdot 1 \\
& =-1+3=2
\end{aligned}
$$

Properties of dot products
If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are vectors and λ a scalar, then

$$
\left.\begin{array}{cc}
\begin{array}{rl}
\mathbf{a} \cdot \mathbf{a}=|a|^{2} & \mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a} \\
\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \cdot \mathbf{c} & (\lambda \mathbf{a}) \cdot \mathbf{b}=\lambda(\mathbf{a} \cdot \mathbf{b})=\mathbf{a} \cdot(\lambda \mathbf{b}) \\
\mathbf{0} \cdot \mathbf{a}=0 & \vec{a}=\left(a_{1}, a_{2}, a_{3}\right\rangle
\end{array} \\
\vec{a} \cdot \vec{a}=a_{1} a_{1}+a_{2} a_{2}+a_{7} a_{3} \\
& =a_{1}^{2}+a_{2}^{2}+a_{3}^{2}=|\vec{a}|^{2}
\end{array}\right] \begin{array}{ll}
|\vec{a}|=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}} &
\end{array}
$$

Angles between vectors
Theorem: If θ is the angle between the vectors \mathbf{a} and \mathbf{b} then

Angles between vectors

Theorem: If θ is the angle between the vectors \mathbf{a} and \mathbf{b} then

$$
\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta
$$

Corollary: If θ is the angle between the vectors \mathbf{a} and \mathbf{b} then

$$
\cos \theta=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}
$$

Law of cosines

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2}-2 a b \cos \theta \\
&|\vec{a}-\vec{b}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}-2|\vec{a}||\vec{b}| \cos \theta \\
&|\vec{a}-\vec{b}|^{2}=(\vec{a}-\vec{b}) \cdot(\vec{a}-\vec{b}) \\
&=\vec{a} \cdot(\vec{a}-\vec{b})-\vec{b} \cdot(\vec{a}-\vec{b}) \\
&=\vec{a} \cdot \vec{a}-\vec{a} \cdot \vec{b}-\vec{b} \cdot \vec{a}+\vec{b} \cdot \vec{b} \\
&=|\vec{a}|^{2}+|\vec{b}|^{2}-2 \vec{a} \cdot \vec{b} \\
& \Rightarrow \vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta
\end{aligned}
$$

Exercise: Find the angle between $\mathbf{a}=\langle 2,2,-1\rangle$ and $\mathbf{b}=\langle 5,-3,2\rangle$.

$$
\begin{aligned}
\vec{a} \cdot \vec{b} & =2(5)+2(-3)+(-1)(2) \\
& =10-6-2=2 \\
|\vec{a}| & =\sqrt{2^{2}+2^{2}+(-1)^{2}}=\sqrt{9}=3 \\
|\vec{b}| & =\sqrt{s^{2}+(-3)^{2}+2^{2}}=\sqrt{38} \\
\cos \theta & =\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}=\frac{2}{3 \sqrt{38}}
\end{aligned}
$$

Orthogonality

Two vectors \mathbf{a} and \mathbf{b} are orthogonal (perpendicular) if the angle between them is $\theta=\pi / 2$. Recall $\cos \pi / 2=0$ and

$$
\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta
$$

Hence, two vectors \mathbf{a} and \mathbf{b} are orthogonal if and only if

$$
\mathbf{a} \cdot \mathbf{b}=0 .
$$

Exercise: Show that $\underbrace{2 \mathbf{i}+2 \mathbf{j}-\mathbf{k}}_{\stackrel{a}{a}}$ is perpendicular to $\underbrace{5 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k}}_{\frac{\square}{b}}$.

$$
\begin{aligned}
\hat{a} \cdot \vec{b} & =2(5)+2(-4)+(-1)(2) \\
& =10-8-2=0
\end{aligned}
$$

$\longrightarrow \vec{a}$ ant \vec{b} are perpendicule

Direction angles
The direction angles of a nonzero vector a are the angles α, β, and γ (in $[0, \pi])$ that a makes with the positive x-, y-, and z-axes, respectively.

$$
\begin{aligned}
& \cos \alpha=\widehat{\left(\frac{a_{1}}{|\mathbf{a}|}\right.}, \cos \beta=\frac{a_{2}}{|\mathbf{a}|}, \text { and } \cos \gamma=\frac{a_{3}}{|\mathbf{a}|} . \\
& \vec{a} \\
& \begin{array}{l}
\hat{i}=\langle 1,0,0\rangle \\
\hat{i}=a \times 1\rangle
\end{array} \\
& \cos \alpha=\frac{\vec{a}-\hat{i}}{|\vec{a}||\hat{i}|}=\frac{a_{1}}{|\vec{a}|}
\end{aligned}
$$

Direction angles

The direction angles of a nonzero vector a are the angles α, β, and γ (in $[0, \pi]$) that a makes with the positive $x-, y$-, and z-axes, respectively.

$$
\cos \alpha=\frac{a_{1}}{|\mathbf{a}|}, \quad \cos \beta=\frac{a_{2}}{|\mathbf{a}|}, \text { and } \cos \gamma=\frac{a_{3}}{|\mathbf{a}|}
$$

Note that

$$
\frac{\mathbf{a}}{|\mathbf{a}|}=\langle\cos \alpha, \cos \beta, \cos \gamma\rangle
$$

Exercise: Find the direction angles of $\mathbf{a}=\langle 1,2,3\rangle$.

$$
\begin{aligned}
& \cos \alpha=\frac{a_{1}}{|\vec{a}|}=\frac{1}{\sqrt{1^{2}+2^{2}+3^{2}}}=\frac{1}{\sqrt{14}} \\
& \cos \beta=\frac{a_{2}}{|\bar{a}|}=\frac{2}{\sqrt{14}} \\
& \cos \gamma=\frac{a_{3}}{|\bar{a}|}=\frac{3}{\sqrt{14}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Orthogonal projection } \\
& \left|\operatorname{proj}_{\vec{a}}\right|=\operatorname{comp}_{\vec{a}} \vec{b} \\
& \cos \theta=\frac{\operatorname{comp}_{\vec{a}} \vec{b}}{|\vec{b}|} \\
& \cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}=\frac{\operatorname{praj}_{\vec{a}} \vec{b}}{|\vec{b}|} \\
& \operatorname{com} p_{\vec{a}} \vec{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{proj}_{\vec{a}} \vec{b} & =\left(\operatorname{com}_{\vec{a}} \vec{b}\right) \frac{\vec{a}}{|\vec{a}|} \\
& =\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}\right) \frac{\vec{a}}{|\vec{a}|} \\
\operatorname{proj}_{\vec{a}} \vec{b} & =\left[\frac{(\vec{a} \cdot \vec{b})}{|\vec{a}|^{2}}\right] \vec{a}
\end{aligned}
$$

Orthogonal projection

The scalar projection of \mathbf{b} onto \mathbf{a} is given by

$$
\operatorname{comp}_{\mathbf{a}} \mathbf{b}=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}
$$

The vector projection of \mathbf{b} onto \mathbf{a} is given by

$$
\operatorname{proj}_{\mathbf{a}} \mathbf{b}=\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}\right) \frac{\mathbf{a}}{|\mathbf{a}|}=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^{2}} \mathbf{a}
$$

Exercise: Find the scalar and vector projection of $\mathbf{b}=\langle 1,1,2\rangle$ onto $\mathbf{a}=$

$$
\begin{gathered}
\langle-2,3,1\rangle . \quad \operatorname{proj}_{\vec{a}} \vec{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^{2}} \vec{a} \\
\vec{a} \cdot \vec{b}=(1)(-2)+(1)(3)+2(1)=-2+3+2=3 \\
|\vec{a}|=\sqrt{(-2)^{2}+3^{2}+1^{2}}=\sqrt{14}, \quad|\vec{a}|^{2}=14 \\
\operatorname{praj}_{\vec{a}} \vec{b}=\frac{3}{14}\langle-2,3,1\rangle \\
\operatorname{comp}_{\vec{a}} \vec{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}=\frac{3}{\sqrt{14}}=\left|\operatorname{proj}_{\vec{a}} \vec{b}\right|
\end{gathered}
$$

Exercise: Work done pulling wagon.

$$
\begin{aligned}
& \text { Distance }=D \hat{i}=\langle D, D\rangle \\
& \text { Farce }=\vec{F} \\
& \begin{aligned}
\text { Work } & =|D \hat{i}\rangle \cdot \vec{F}
\end{aligned}=|D \hat{i}||\vec{F}| \cos \theta \\
& \text { Dove }=D(12) \cos \left(45^{\circ}\right)
\end{aligned}
$$

$$
=\frac{12 p}{\sqrt{2}}
$$

