Math 1272: Calculus II 12.4 The Cross Product

Instructor: Jeff Calder Office: 538 Vincent
Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/1272S19

The cross product
Definition vi: The cross product $\mathbf{a} \times \mathbf{b}$ of two vectors \mathbf{a} and \mathbf{b} is a vector orthogonal to both \mathbf{a} and \mathbf{b}.

- Orientation?
- Length?

The cross product
Definition va: The cross product $\mathbf{a} \times \mathbf{b}$ of two vectors \mathbf{a} and \mathbf{b} is a vector orthogonal to both \mathbf{a} and \mathbf{b} with direction given by the right hand rule.

The cross product

Definition v3: For the standard basis vectors

$$
\begin{array}{ll}
\mathbf{i} \times \mathbf{j}=\mathbf{k} & \mathbf{j} \times \mathbf{i}=-\mathbf{k} \\
\mathbf{i} \times \mathbf{k}=-\mathbf{j} & \mathbf{k} \times \mathbf{i}=\mathbf{j} \\
\mathbf{j} \times \mathbf{k}=\mathbf{i} & \mathbf{k} \times \mathbf{j}=-\mathbf{i} .
\end{array}
$$

We also want some nice properties

$$
\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle
$$

Derivation of cross product

$$
\vec{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle
$$

$$
\begin{aligned}
\vec{a} & =a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k} \\
\vec{b} & =b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k} \\
\vec{a} \times \vec{b} & =\left(a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}\right) \times\left(b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}\right) \\
& =\left(a_{1} \hat{i}\right) \times\left(b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}\right) \\
& +\left(a_{2} \hat{j}\right) \times\left(b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}\right) \\
& +\left(a_{3} \hat{k}\right) \times\left(b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\underset{0}{a_{1} b_{1}(\hat{i} \times \hat{i})}+\underset{\hat{k}}{a_{1} b_{2}(\hat{i} \times \hat{j})}+\underset{-\hat{j}}{a_{1} b_{3}(\hat{i} \times \hat{k})} \\
& +a_{2} b_{1}(\hat{j} \times \hat{i})+a_{2} b_{2}(\underset{i}{\hat{k}} \times \hat{j})+a_{2} b_{3}(\hat{j} \underset{i}{\hat{k}}) \\
& +\frac{a_{3} b_{1}(\hat{k \times i})}{\hat{j}}+a_{3} b_{2}(\hat{k} \times \hat{j})+a_{3} b_{3}(\hat{k} \times \hat{k}) \\
& =\left(a_{2} b_{3}-a_{3} b_{2}\right) \hat{i}+\left(a_{3} b_{1}-a_{1} b_{3}\right) \hat{j} \\
& +\left(a_{1} b_{2}-a_{2} b_{1}\right) \hat{R}
\end{aligned}
$$

Determinants

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c \quad(2 \times 2 \text { determinant })
$$

3×3 determinant

$$
\begin{gathered}
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{32}
\end{array}\right|=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right| \\
\\
+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
\end{gathered}
$$

$$
\begin{aligned}
=a_{11}\left(a_{22} a_{33}-a_{23} a_{32}\right) & -a_{12}\left(a_{21} a_{33}-a_{23} a_{31}\right) \\
& +a_{13}\left(a_{21} a_{32}-a_{22} a_{31}\right)
\end{aligned}
$$

Turur out $\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle, \vec{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$ then

$$
\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

$$
\begin{aligned}
=\left(a_{2} b_{3}-a_{3} b_{2}\right) \hat{i} & -\left(a_{1} b_{3}-a_{3} b_{1}\right) \hat{j} \\
& +\left(a_{1} b_{2}-a_{2} b_{1}\right) \hat{k}
\end{aligned}
$$

Cross product

Definition: If $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$, then the cross product of \mathbf{a} and \mathbf{b} is the vector

$$
\mathbf{a} \times \mathbf{b}=\left\langle a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right\rangle .
$$

Properties of cross product

1. $\mathbf{a} \times \mathbf{b}$ is orthogonal to both \mathbf{a} and \mathbf{b}.
2. If θ is the angle between \mathbf{a} and \mathbf{b} then

$$
|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}| \sin \theta
$$

3. Two non-zero vectors are parallel if and only if $\mathbf{a} \times \mathbf{b}=0$.

Areas of parallelograms
Fact: The length of the cross product $\mathbf{a} \times \mathbf{b}$ is equal to the area of the parallelogram determined by \mathbf{a} and \mathbf{b}.

$$
\begin{array}{ll}
\sin \theta=\frac{h}{|\vec{a}|} & \rightarrow \\
\cos \theta=\frac{l}{|\vec{a}|} & l=|\vec{a}| \sin \theta \\
l=|\vec{a}| \cos \theta
\end{array}
$$

$$
\begin{aligned}
|\vec{a} \times \vec{b}| & =2 \operatorname{Area}(T)+\text { Area }(B) \\
& =\ell \hbar+(|\vec{b}|-l) \hbar \\
& =|\vec{b}| h \\
& =|\vec{a}||\vec{b}| \sin \theta=|\vec{a} \times \vec{b}| .
\end{aligned}
$$

Find the area of the triangle with vertices $P=(1,4,6), Q=(-2,5,-1)$, and $R=(1,-1,1)$.

$$
\begin{aligned}
& \vec{a}=Q-P \\
& \vec{b}=R-P \\
& \vec{a}=\langle-3,1,-7\rangle \\
& \vec{b}=\langle 0,-5,-5\rangle
\end{aligned}
$$

Area of triangle $=\frac{1}{2}$ Area of paralblegran

$$
=\frac{1}{2}|\vec{a} \times \vec{b}|
$$

$$
\begin{aligned}
\vec{a} \times \vec{b} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
-3 & 1 & -7 \\
0 & -5 & -5
\end{array}\right| \\
= & \hat{i}(-5-(-5)(-7))-\hat{j}((-3)(-5)-(-7) 0) \\
& +\hat{k}((-3)(-5)-(1) 0) \\
= & -40 \hat{i}-15 \hat{j}+15 \hat{k} \\
\text { Area }= & \frac{1}{2}|\vec{a} \times \vec{b}|=\frac{1}{2} \sqrt{40^{2}+15^{2}+15^{2}}=\ldots
\end{aligned}
$$

Warning!!
Some laws of algebra do not hold for the cross product:
Non-commutative: $\mathbf{a} \times \mathbf{b} \neq \mathbf{b} \times \mathbf{a}$.

$$
\begin{aligned}
& \hat{i} \times \hat{j}=\hat{k} \\
& \hat{j} \times \hat{i}=-\hat{k}
\end{aligned}
$$

$$
\vec{a} \times \vec{b}=-\vec{b} \times \vec{a}
$$

Non-associate: $\mathbf{a} \times(\mathbf{b} \times \mathbf{c}) \neq(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$.

$$
\begin{aligned}
\hat{i} \times(\hat{i} \times \hat{j}) & =\hat{i} \times \hat{k}=-\hat{j} \\
(\hat{i} \times \hat{i}) \times \hat{j} & =\hat{o} \times \hat{j}=0
\end{aligned}
$$

Algebra with cross products

$$
\begin{aligned}
\mathbf{a} \times \mathbf{b} & =-\mathbf{b} \times \mathbf{a} \\
(\lambda \mathbf{a}) \times \mathbf{b} & =\lambda(\mathbf{a} \times \mathbf{b})=\mathbf{a} \times(\lambda \mathbf{b}) \\
\mathbf{a} \times(\mathbf{b}+\mathbf{c}) & =\mathbf{a} \times \mathbf{b}+\mathbf{a} \times \mathbf{c} \\
(\mathbf{a}+\mathbf{b}) \times \mathbf{c} & =\mathbf{a} \times \mathbf{c}+\mathbf{b} \times \mathbf{c} \\
\mathbf{a \cdot (\mathbf { b } \times \mathbf { c })} & =(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} \\
\mathbf{a} \times(\mathbf{b} \times \mathbf{c}) & =(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c} . \\
\hline \mathbf{a \cdot (b \times c)} & =-a \cdot(c \times b) \\
& =-(a \times c) \cdot b
\end{aligned}
$$

