# Math 1272: Calculus II <br> 12.5 Equations of lines and planes 

Instructor: Jeff Calder Office: 538 Vincent<br>Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/1272S19

## Lines

The equation for a line passing through the point $\mathbf{r}_{0}$ with direction $\mathbf{v}$ is

In parametric form
$t>0$ large

$$
\vec{r}_{a}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle, \quad \vec{v}=\langle a, b, c\rangle
$$

$$
\vec{r}=\vec{r}_{0}+t \vec{v}=\left(x_{0}+a t, y_{0}+b t, z_{0}+c t\right)
$$

Find the vector and parametric equations for the line that passes through the point $(5,1,3)$ and is parallel to the vector $\mathbf{i}+4 \mathbf{j}-2 \mathbf{k}$. Find 2 other points on the line.

$$
\vec{r}_{0}=\langle 5,1,3\rangle, \quad \vec{V}=(1,4,-2)
$$

vector

$$
\vec{r}=\vec{r}_{0}+t \vec{v}=\langle 5,1,3\rangle+t\langle 1,4,-2\rangle
$$

Parametric

$$
\begin{aligned}
x=5+t, \quad y & =1+4 t \\
z & =3-2 t
\end{aligned}
$$

$$
\frac{t=1}{\langle 6,5,1\rangle} \quad \frac{t=-1}{\langle 4,-3,5\rangle}
$$

We can eliminate $t$ from the parametric equations

$$
x=x_{0}+a t, \quad y=y_{0}+b t, \quad z=z_{0}+c t
$$

to get symmetric equations for a line.

$$
t=\frac{x-x_{0}}{a}, \quad t=\frac{y-y_{0}}{b}, \quad t=\frac{z-z_{0}}{c}
$$

(3D) $\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}$
$(2 D) \quad\left(y-y_{0}\right)=m\left(x-x_{0}\right)$

Find the parametric and symmetric eqautions for the line that passes through the points $A=(2,4,-3)$ and $B=(3,-1,1)$. At what point does the line intersect the $x y$-plane?

## Line segment

The line segment from $\mathbf{r}_{0}$ to $\mathbf{r}_{1}$ is given by the vector equation

$$
\begin{aligned}
\mathbf{r}(t) & =(1-t) \mathbf{r}_{0}+t \mathbf{r}_{1}, \quad 0 \leq t \leq 1 . \\
& =\vec{r}_{0}+t \underbrace{\left(\vec{r}_{1}-\vec{r}_{0}\right)}_{\vec{v}}
\end{aligned}
$$

## Planes

$$
\vec{n} \cdot \vec{r}=\vec{n} \cdot \vec{r}_{0}
$$

The equation for a plane is

$$
\mathbf{n} \cdot\left(\mathbf{r}-\mathbf{r}_{0}\right)=0
$$

where $\mathbf{n}$ is a vector orthogonal to the plane, and $\mathbf{r}_{0}$ is a point on the plane.


## Planes

The equation for a plane is

$$
\mathbf{n} \cdot\left(\mathbf{r}-\mathbf{r}_{0}\right)=0
$$

where $\mathbf{n}$ is a vector orthogonal to the plane, and $\mathbf{r}_{0}$ is a point on the plane.

If $\mathbf{n}=\langle a, b, c\rangle$ and $\mathbf{r}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$, then the scalar equation for a plane is

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

which has the form

$$
a x+b y+c z=d .=a x_{0}+b y_{0}+c z=
$$

Find an equation of the plane that passes through the points $P=(1,3,2)$, $Q=(3,-1,6)$, and $R=(5,2,0)$.

$$
\begin{aligned}
& Q=(3,-1,6) \text {, and } R=(5,2,0) . \\
& \vec{a}=Q-P=\langle 2,-4,4\rangle \\
& \vec{b}=R-P=\langle 4,-1,-2\rangle \\
& \vec{n}=\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & -4 & 4 \\
4 & -1 & -\mid 2
\end{array}\right| \\
& =(8+4) \hat{b}-(-4-16) \hat{j}+(-2+16) \hat{k}
\end{aligned}
$$

$$
=12 \hat{i}+20 \hat{j}+14 \hat{k}=\langle 12,20,14\rangle
$$

Vector equation is

$$
\langle 12,20,14\rangle \cdot(\vec{r}-(1,3,2))=0
$$

If $\vec{r}=\langle x, y, z\rangle \quad$ the

$$
\langle 12,20,14\rangle \cdot\langle x-1, y-3, z-2\rangle=0
$$

$\mathrm{s}^{\text {cal as }}$

$$
\operatorname{sichar}_{\text {far }}^{\text {cal }} 12(x-1)+20(y-3)+14(z-2)=0
$$

$$
\begin{aligned}
12 x+20 y+14 z & =12+60+28 \\
& =100
\end{aligned}
$$

Find the point at which the line with parametric equations $x=2+3 t$,
$y=-4 t, z=5+t$ intersects the plane $4 x+5 y-2 z=18$.

$$
\begin{aligned}
& 4(2+3 t)+5(-4 t)-2(5+t)=18 \\
& 8+12 t-20 t-10-2 t=18 \\
&-10 t-2=18 \\
& 10 t+2=-18 \\
& 10 t=-20 \rightarrow t=-2
\end{aligned}
$$

The point is $(-4,8,3)$.

$$
\begin{aligned}
& x=2+3(-2)=-4 \\
& y=-4(-2)=8 \\
& z=5+(-2)=3
\end{aligned}
$$

Find the angle between the two planes $x+y+z=1$ and $x-2 y+3 z=1$, and find the symmetric equations for the line of intersection of the planes.

## Distances

Find a formula for the distance $D$ from a point $P_{1}=\left(x_{1}, y_{1}, z_{1}\right)$ to the plane $a x+b y+c z=d$.

